Previous |  Up |  Next

Article

Keywords:
KC-space; $T_1$-complementary topology; $T_1$-independent; sequential space
Summary:
We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of $T_1$-topologies on a set $X$.
References:
[1] Anderson B.A.: A class of topologies with $T_1$-complements. Fund. Math. 69 (1970), 267-277. MR 0281140
[2] Anderson B.A., Stewart D.G.: $T_1$-complements of $T_1$-topologies. Proc. Amer. Math. Soc. 23 (1969), 77-81. MR 0244927
[3] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[4] Fleissner W.G.: A $T_B$-space which is not Katětov $T_B$. Rocky Mountain J. Math. 10 3 (1980), 661-663. MR 0590229 | Zbl 0448.54021
[5] Franklin S.P.: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115. MR 0180954 | Zbl 0132.17802
[6] Pelant J., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Pseudocompact Whyburn spaces need not be Fréchet. submitted.
[7] Shakhmatov D., Tkačenko M.G., Wilson R.G.: Transversal and $T_1$-independent topologies. submitted.
[8] Simon P.: On accumulation points. Cahiers Topologie Géom. Différentielle Catégoriques 35 (1994), 321-327. MR 1307264 | Zbl 0858.54008
[9] Smythe N., Wilkins C.A.: Minimal Hausdorff and maximal compact spaces. J. Austral. Math. Soc. 3 (1963), 167-177. MR 0154254 | Zbl 0163.17201
[10] Steen L.A., Seebach J.A.: Counterexamples in Topology. Second Edition, Springer Verlag, New York, 1978. MR 0507446 | Zbl 0386.54001
[11] Steiner A.K.: Complementation in the lattice of $T_1$-topologies. Proc. Amer. Math. Soc. 17 (1966), 884-885. MR 0193033
[12] Steiner E.F., Steiner A.K.: Topologies with $T_1$-complements. Fund. Math. 61 (1967), 23-28. MR 0230277
[13] Tkačenko M.G., Tkachuk V.V., Wilson R.G., Yaschenko I.V.: No submaximal topology on a countable set is $T_1$-complementary. Proc. Amer. Math. Soc. 128 1 (1999), 287-297. MR 1616605
[14] Wilansky A.: Between $T_1$ and $T_2$. Amer. Math. Monthly 74 (1967), 261-266. MR 0208557
Partner of
EuDML logo