Article
Keywords:
biharmonic Green functions
Summary:
Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A  necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
References:
                        
[1] Anandam V.: 
Biharmonic Green functions in a Riemannian manifold. Arab J. Math. Sc. 4 (1998), 39-45. 
MR 1679626 | 
Zbl 0942.31005[3] Anandam V.: 
Biharmonic classification of harmonic spaces. Rev. Roumaine Math. Pures Appl. 45 (2000), 383-395. 
MR 1840160 | 
Zbl 0990.31003[4] Brelot M.: 
Fonctions sousharmoniques associées à une mesure. Stud. Cerc. Şti. Mat. Iaşi 2 (1951), 114-118. 
MR 0041989 | 
Zbl 0081.31601[5] Brelot M.: 
Axiomatique des fonctions harmoniques. Les presses de l'Université de Montréal, 1966. 
MR 0247124 | 
Zbl 0148.10401[8] Sario L., Nakai M., Wang C., Chung L.O.: 
Classification theory of Riemannian manifolds. Lecture Notes in Math. 605, Springer-Verlag, 1977. 
MR 0508005 | 
Zbl 0355.31001