Article
Keywords:
weakly Whyburn space; open function
Summary:
We show that a (weakly) Whyburn space $X$ may be mapped continuously via an open map $f$ onto a non (weakly) Whyburn space $Y$. This fact may happen even between topological groups $X$ and $Y$, $f$ a homomorphism, $X$ Whyburn and $Y$ not even weakly Whyburn.
References:
                        
[DIT] Dimov G.D., Isler R., Tironi G.: 
On functions preserving almost radiality and their relations to radial and pseudoradial spaces. Comment. Math. Univ. Carolinae 28.4 (1987), 357-360. 
MR 0928687[PTTW] Pelant J., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: 
Pseudocompact Whyburn spaces need not be Fréchet. to appear on PAMS. 
MR 1992867 | 
Zbl 1028.54004[PT] Pultr A., Tozzi A.: 
Equationally closed subframes and representation of quotient spaces. Cahiers de la Topologie et Géométrie Différentielle Categoriques 34 (1993), 167-183. 
MR 1239466 | 
Zbl 0789.54008[S] Simon P.: 
On accumulation points. Cahiers de la Topologie et Géométrie Différentielle Categoriques 35 (1994), 321-327. 
MR 1307264 | 
Zbl 0858.54008[TY] Tkachuk V.V., Yashenko I.V.: 
Almost closed sets and topologies they determine. Comment. Math. Univ. Carolinae 42.2 (2001), 395-405. 
MR 1832158