Article
Keywords:
compact pospace; property DINT; quasicontinuous posets; GCD posets; interval topology
Summary:
Posets with property DINT which are compact pospaces with respect to the interval topologies are characterized.
References:
                        
[1] Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S.: 
A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, and New York, 1980. 
MR 0614752 | 
Zbl 0452.06001[2] Gierz G., Lawson J.D.: 
Generalized continuous and hypercontinuous lattices. Rocky Mountain J. Math. 11 (1981), 271-296. 
MR 0619676 | 
Zbl 0472.06014[3] Gierz G., Lawson J.D., Stralka A.: 
Quasicontinuous posets. Houston J. Math 9 (1983), 191-208. 
MR 0703268 | 
Zbl 0529.06002[4] Lawson J.D.: 
The upper interval topology, property M, and compactness. Electronic Notes in Theoret. Comput. Sci. 13 (1998). 
MR 1677497[5] Raney G.N.: 
A subdirect-union representation for completely distributive complete latices. Proc. Amer. Math Soc. 4 (1953), 518-522. 
MR 0058568[6] Rudin M.E.: 
Directed sets which converge. Proc. Riverside Symposium on Topology and Modern Analysis, 1980, pp.305-307. 
MR 0619055 | 
Zbl 0457.04007[7] Venugopalan P.: 
A generalization of completely distributive lattices. Algebra Universalis 27 (1990), 578-586. 
MR 1387903 | 
Zbl 0722.06003