Previous |  Up |  Next

Article

Title: A combinatorial property and power graphs of semigroups (English)
Author: Kelarev, A. V.
Author: Quinn, S. J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 1-7
.
Category: math
.
Summary: Research on combinatorial properties of sequences in groups and semigroups originates from Bernhard Neumann's theorem answering a question of Paul Erd"{o}s. For results on related combinatorial properties of sequences in semigroups we refer to the book [3]. In 2000 the authors introduced a new combinatorial property and described all groups satisfying it. The present paper extends this result to all semigroups. (English)
Keyword: sequences
Keyword: power graphs
Keyword: semigroups
MSC: 05C20
MSC: 05C25
MSC: 20M99
idZBL: Zbl 1099.05042
idMR: MR2076856
.
Date available: 2009-05-05T16:42:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119433
.
Reference: [1] Chartland G., Lesniak L.: Graphs and Digraphs.Chapman & Hall, London, 1996. MR 1408678
Reference: [2] Graham R.L.: Rudiments of Ramsey Theory.Amer. Math. Soc., Providence, R.I., 1981. Zbl 0555.05051, MR 0608630
Reference: [3] de Luca A., Varricchio S.: Regularity and finiteness conditions.Handbook of Formal Languages, Vol. 1, Eds. G. Rosenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, 747-810. MR 1470003
Reference: [4] de Luca A., Varricchio S.: Finiteness and Regularity in Semigroups and Formal Languages.Monographs in Theoretical Computer Science, Springer, Berlin, 1998. Zbl 0935.68056
Reference: [5] Howie J.M.: Fundamentals of Semigroup Theory.Clarendon Press, Oxford, 1995. Zbl 0835.20077, MR 1455373
Reference: [6] Justin J., Pirillo G.: On some questions and conjectures in combinatorial semigroup theory.Southeast Asian Bull. Math. 18 (1994), 91-104. MR 1319315
Reference: [7] Kelarev A.V.: Combinatorial properties of sequences in groups and semigroups.{Combinatorics, Complexity and Logic}, Eds. D.S. Bridge, C.S. Calude, J. Gibbons, S. Reeves, I.H. Witten, (Springer Ser. Discrete Math. Theor. Comput. Soc.), Springer-Verlag, Singapore, 1997, pp289-2983. Zbl 0914.68155, MR 1647316
Reference: [8] Kelarev A.V.: Ring Constructions and Applications.World Scientific, 2002. Zbl 0999.16036, MR 1875643
Reference: [9] Kelarev A.V.: Graph Algebras and Automata.Marcel Dekker, 2003. Zbl 1070.68097, MR 2064147
Reference: [10] Kelarev A.V., Quinn S.J.: A combinatorial property and power graphs of groups.Contrib. General Algebra 12, 58. Arbeitstagung Allgemeine Algebra (Vienna University of Technology, June 3-6, 1999) Eds. D. Dorninger, G. Eigenthaler, M. Goldstern, H.K. Kaiser, W. More, W.B. Mueller, Springer-Verlag, 2000, pp.229-235. Zbl 0966.05040, MR 1777663
Reference: [11] Kelarev A.V., Quinn S.J.: A combinatorial property of Cayley graphs and semigroups.Semigroup Forum 66 (2003), 89-96. MR 1939667
Reference: [12] Kelarev A.V., Quinn S.J.: Directed graphs and combinatorial properties of semigroups.J. Algebra 251 (2002), 1 16-26. Zbl 1005.20043, MR 1900273
Reference: [13] Kelarev A.V., Quinn S.J.: Power graphs and semigroups of matrices.Bull. Austral. Math. Soc. 63 (2001), 341-344. Zbl 1043.20042, MR 1823720
Reference: [14] Lothair M.: Combinatorics on Words.Addison-Wesley, Tokyo, 1982. MR 0675953
Reference: [15] Neumann B.H.: A problem of Paul Erdös on groups.J. Austral. Math. Soc. 21 (1976), 467-472. Zbl 0333.05110, MR 0419283
Reference: [16] Pin J.-E.: Syntactic semigroups.Handbook of Formal Languages. Vol. 1. Word, Language, Grammar. Eds. G. Rozenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, pp.679-746. MR 1470002
Reference: [17] Robinson D.J.S.: A Course in the Theory of Groups.Springer, New-York, Berlin, 1982. Zbl 0836.20001, MR 0648604
Reference: [18] Shevrin L.N., Ovsyannikov A.J.: Semigroups and their Subsemigroup Lattices.Kluwer, Dordrecht, 1996. Zbl 0858.20054, MR 1420413
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_1.pdf 196.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo