Previous |  Up |  Next

Article

Title: A sufficient condition for maximal resolvability of topological spaces (English)
Author: Bienias, Jerzy
Author: Terepeta, Małgorzata
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 139-144
.
Category: math
.
Summary: We show a new theorem which is a sufficient condition for maximal resolvability of a topological space. We also discuss some relationships between various theorems about maximal resolvability. (English)
Keyword: maximally resolvable space
Keyword: base at a point
Keyword: $\pi$-base
MSC: 54A10
MSC: 54A25
idZBL: Zbl 1100.54003
idMR: MR2076865
.
Date available: 2009-05-05T16:43:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119442
.
Reference: [B] Bella A.: The density topology is extraresolvable.Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 495-498. Zbl 1013.54001, MR 1811549
Reference: [C] Ceder J.G.: On maximally resolvable spaces.Fund. Math. 55 (1964), 87-93. Zbl 0139.40401, MR 0163279
Reference: [CGF] Comfort W.W., Garcia-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149-167. Zbl 0866.54004, MR 1425934
Reference: [Ha] Hashimoto H.: On the *-topology and its application.Fund. Math. 91 (1976), 5-10. MR 0413058
Reference: [H] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (1943), 309-333. Zbl 0060.39407, MR 0008692
Reference: [KM] Kuratowski K., Mostowski A.: Set Theory (in Polish).PWN, Warszawa, 1966. MR 0514701
Reference: [S] Sierpiński W.: Cardinal and Ordinal Numbers.Warszawa, 1958. MR 0095787
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_10.pdf 184.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo