Previous |  Up |  Next

Article

Title: Kikkawa loops and homogeneous loops (English)
Author: Kikkawa, Michihiko
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 279-285
.
Category: math
.
Summary: In H. Kiechle's publication ``Theory of K-loops'' [3], the name Kikkawa loops is given to symmetric loops introduced by the author in 1973. This concept started from an analogical imagination of sum of vectors in Euclidean space brought up on a sphere. In 1975, this concept was extended by him to the more general concept of homogeneous loops, and it led us to a non-associative generalization of the theory of Lie groups. In this article, the backstage of finding these concepts will be disclosed from the viewpoint how a new mathematical concept appears and grows up in imagination of a mathematician. (English)
Keyword: loops
Keyword: Lie triple algebras
Keyword: symmetric spaces
MSC: 01A70
MSC: 05B07
MSC: 20N05
MSC: 22A30
MSC: 53C35
MSC: Other
idZBL: Zbl 1101.20039
idMR: MR2075276
.
Date available: 2009-05-05T16:45:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119457
.
Reference: [1] Akivis M.: Local algebras of a multidimensional web (in Russian).Sibir. Mat. Z. 17 (1976), 5-11. MR 0405261
Reference: [2] Chein O., Pflugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications.Heldermann Verlag, 1990. Zbl 0719.20036, MR 1125806
Reference: [3] Kiechle H.: Theory of K-Loops.Lecture Note in Mathematics 1778, Springer, 2002. Zbl 0997.20059, MR 1899153
Reference: [4] Kikkawa M.: On local loops in affine manifolds.J. Sci. Hiroshima Univ. A-I:28 (1964), 199-207. Zbl 0141.19603, MR 0187173
Reference: [5] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces.Mem. Fac. Lit. Sci. Shimane Univ. Nat. Sci. 6 (1973), 9-13. Zbl 0264.53028, MR 0327962
Reference: [6] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces II.Mem. Fac. Lit. Sci. Shimane Univ. Nat. Sci. 7 (1974), 29-35. Zbl 0279.53046, MR 0342638
Reference: [7] Kikkawa M.: Geometry of homogeneous Lie loops.Hiroshima Math. J. 5 (1975), 141-179. Zbl 0304.53037, MR 0383301
Reference: [8] Kikkawa M.: A note on subloops of a homogeneous Lie loop and subsystems of its Lie triple algebra.Hiroshima Math. J. 5 (1975), 439-446. Zbl 0312.53036, MR 0388280
Reference: [9] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces III.Mem. Fac. Lit. Sci. Shimane Univ. Nat. Sci. 9 (1975), 7-12. Zbl 0322.20035, MR 0412316
Reference: [10] Kikkawa M.: On the left translations of homogeneous loops.Mem. Fac. Lit. Sci. Shimane Univ. Nat. Sci. 10 (1976), 19-25. Zbl 0364.20076, MR 0432795
Reference: [11] Kikkawa M.: Projectivity of homogeneous left loops on Lie groups I.Mem. Fac. Sci. Shimane Univ. 23 (1989), 17-22. Zbl 0703.22003, MR 1044715
Reference: [12] Kikkawa M.: Projectivity of homogeneous left loops.Proc. International Symposium on Non-associative Algebras and Related Topics, World Scientific, 1991, pp.77-99. Zbl 0788.53042, MR 1150252
Reference: [13] Kikkawa M.: Remarks on Akivis left loops.Mem. Fac. Sci. Shimane Univ. 29 (1995), 1-9. Zbl 0843.22008, MR 1374956
Reference: [14] Kikkawa M.: Geometry of homogeneous left Lie loops and tangent Lie triple algebras.Mem. Fac. Sci. Engr. Shimane Univ. 32-B (1999), 69-74. Zbl 1032.17058, MR 1688604
Reference: [15] Loos O.: Symmetric Spaces I.Benjamin, 1969. Zbl 0175.48601
Reference: [16] Nomizu K.: Invariant affine connections on homogeneous spaces.Amer. J. Math. 76 (1954), 33-65. Zbl 0059.15805, MR 0059050
Reference: [17] Sabinin L.V.: Geometry of loops (in Russian).Mat. Zametki 12 (1972), 605-616. MR 0340461
Reference: [18] Sanami M., Kikkawa M.: A class of double Lie algebras on simple Lie algebras and projectivity of simple Li groups.Mem. Fac. Sci. Shimane Univ. 25 (1991), 39-44. MR 1149512
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_9.pdf 189.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo