Previous |  Up |  Next

Article

Title: Subloops of sedenions (English)
Author: Kivunge, Benard M.
Author: Smith, Jonathan D. H
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 295-302
.
Category: math
.
Summary: This note investigates sedenion multiplication from the standpoint of loop theory. New two-sided loops are obtained within the version of the sedenions introduced by the second author. Conditions are given for the satisfaction of standard loop-theoretical identities within these loops. (English)
Keyword: loop
Keyword: left loop
Keyword: sedenion
Keyword: octonion
Keyword: Cayley numbers
Keyword: inverse property
MSC: 17A75
MSC: 20N05
idZBL: Zbl 1101.20041
idMR: MR2075278
.
Date available: 2009-05-05T16:45:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119459
.
Reference: [1] Albert A.A: Studies in Modern Algebra.Prentice-Hall, Englewood Cliffs, NJ, 1963. Zbl 0192.00102, MR 0146228
Reference: [2] Conway J.H., Smith D.A.: On Quaternions and Octonions: Their Geometry and Symmetry.A.K. Peters Ltd., Natick, MA, 2003. MR 1957212
Reference: [3] Ebbinghaus H.-D. {et al.}: Numbers.Springer Verlag, New York, NY, 1991. MR 1415833
Reference: [4] Kinyon M.K.: private communication..
Reference: [5] Pfister A.: Zur Darstellung definiter Funktionen als Summe von Quadraten.Inv. Math. 4 (1967), 229-237. Zbl 0222.10022, MR 0222043
Reference: [6] Smith J.D.H.: Quasigroup representation theory.pp.195-207 in ``Universal Algebra and Quasigroup Theory'', (eds. A. Romanowska and J.D.H. Smith), Heldermann, Berlin, 1992. Zbl 0772.20023, MR 1191234
Reference: [7] Smith J.D.H.: A left loop on the $15$-sphere.J. Algebra 176 (1995), 128-138. Zbl 0841.17004, MR 1345298
Reference: [8] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra.Wiley, New York, NY, 1999. Zbl 0946.00001, MR 1673047
Reference: [9] Taylor W.: Spaces and equations.Fund. Math. 164 (2000), 193-240. Zbl 0968.08004, MR 1784642
Reference: [10] Zassenhaus H., Eichhorn W.: Herleitung von Acht- und Sechzehn-Quadrate-Identitäten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonschen Zahlen.Arch. Math. 17 (1966), 492-496. Zbl 0145.26301, MR 0206027
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_11.pdf 193.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo