Title:
|
$n$-T-quasigroup codes with one check symbol and their error detection capabilities (English) |
Author:
|
Mullen, Gary L. |
Author:
|
Shcherbacov, Victor |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
321-340 |
. |
Category:
|
math |
. |
Summary:
|
It is well known that there exist some types of the most frequent errors made by human operators during transmission of data which it is possible to detect using a code with one check symbol. We prove that there does not exist an $n$-T-code that can detect all single, adjacent transposition, jump transposition, twin, jump twin and phonetic errors over an alphabet that contains 0 and 1. Systems that detect all single, adjacent transposition, jump transposition, twin, jump twin errors and almost all phonetic errors of the form $a0\rightarrow 1a$, $a\neq 0$, $a\neq 1$ over alphabets of different, and minimal size, are constructed. We study some connections between the properties of anti-commutativity and parastroph orthogonality of T-quasigroups. We also list possible errors of some types (jump transposition, twin error, jump twin error and phonetic error) that the system of the serial numbers of German banknotes cannot detect. (English) |
Keyword:
|
quasigroup |
Keyword:
|
$n$-ary quasigroup |
Keyword:
|
check character system |
Keyword:
|
code |
Keyword:
|
the system of the serial numbers of German banknotes |
MSC:
|
20N05 |
MSC:
|
20N15 |
MSC:
|
94B60 |
MSC:
|
94B65 |
idZBL:
|
Zbl 1099.94036 |
idMR:
|
MR2075280 |
. |
Date available:
|
2009-05-05T16:45:30Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119461 |
. |
Reference:
|
[1] Beckley D.F.: An optimum system with modulo $11$.The Computer Bulletin 11 213-215 (1967). |
Reference:
|
[2] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (in Russian). MR 0218483 |
Reference:
|
[3] Belousov V.D.: Elements of the Quasigroup Theory, A Special Course.Kishinev, 1981 (in Russian). |
Reference:
|
[4] Belousov V.D.: $n$-Ary Quasigroups.Shtiinta, Kishinev, 1972 (in Russian). MR 0354919 |
Reference:
|
[5] Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups, I and II.preprints. MR 2174275 |
Reference:
|
[6] Damm M.: Prüfziffersysteme über Quasigruppen.Diplomarbeit, Philipps-Universität Marburg, 1998. |
Reference:
|
[7] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Académiai Kiadó, Budapest, 1974. MR 0351850 |
Reference:
|
[8] Ecker A., Poch G.: Check character systems.Computing 37/4 277-301 (1986). Zbl 0595.94012, MR 0869726 |
Reference:
|
[9] Gumm H.P.: A new class of check-digit methods for arbitrary number systems.IEEE Trans. Inf. Th. IT, 31 (1985), 102-105. Zbl 0557.94013 |
Reference:
|
[10] Kargapolov M.I., Merzlyakov Yu.I.: Foundations of Group Theory.Nauka, Moscow, 1977 (in Russian). Zbl 0508.20001, MR 0444748 |
Reference:
|
[11] Laywine Ch.L., Mullen G.L.: Discrete Mathematics using Latin Squares.John Wiley & Sons, Inc., New York, 1998. Zbl 0957.05002, MR 1644242 |
Reference:
|
[12] Mullen G.L., Shcherbacov V.: Properties of codes with one check symbol from a quasigroup point of view.Bul. Acad. Ştiinte Repub. Mold. Mat. 2002, no 3, pp.71-86. Zbl 1065.94021, MR 1991018 |
Reference:
|
[13] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[14] Sade A.: Produit direct-singulier de quasigroupes othogonaux et anti-abeliens.Ann. Soc. Sci. Bruxelles, Ser. I, 74 (1960), 91-99. MR 0140599 |
Reference:
|
[15] Schulz R.-H.: Check Character Systems and Anti-symmetric Mappings.H. Alt (Ed.): Computational Discrete Mathematics, Lecture Notes in Comput. Sci. 2122, 2001, pp.136-147. Zbl 1003.94537, MR 1911586 |
Reference:
|
[16] Schulz R.-H.: Equivalence of check digit systems over the dicyclic groups of order $8$ and $12$.in J. Blankenagel & W. Spiegel, editor, Mathematikdidaktik aus Begeisterung für die Mathematik, pp.227-237, Klett Verlag, Stuttgart, 2000. Zbl 1011.94539 |
Reference:
|
[17] Verhoeff J.: Error Detecting Decimal Codes.Vol. 29, Math. Centre Tracts. Math. Centrum Amsterdam, 1969. Zbl 0267.94016, MR 0256770 |
. |