Previous |  Up |  Next

Article

Title: $n$-T-quasigroup codes with one check symbol and their error detection capabilities (English)
Author: Mullen, Gary L.
Author: Shcherbacov, Victor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 321-340
.
Category: math
.
Summary: It is well known that there exist some types of the most frequent errors made by human operators during transmission of data which it is possible to detect using a code with one check symbol. We prove that there does not exist an $n$-T-code that can detect all single, adjacent transposition, jump transposition, twin, jump twin and phonetic errors over an alphabet that contains 0 and 1. Systems that detect all single, adjacent transposition, jump transposition, twin, jump twin errors and almost all phonetic errors of the form $a0\rightarrow 1a$, $a\neq 0$, $a\neq 1$ over alphabets of different, and minimal size, are constructed. We study some connections between the properties of anti-commutativity and parastroph orthogonality of T-quasigroups. We also list possible errors of some types (jump transposition, twin error, jump twin error and phonetic error) that the system of the serial numbers of German banknotes cannot detect. (English)
Keyword: quasigroup
Keyword: $n$-ary quasigroup
Keyword: check character system
Keyword: code
Keyword: the system of the serial numbers of German banknotes
MSC: 20N05
MSC: 20N15
MSC: 94B60
MSC: 94B65
idZBL: Zbl 1099.94036
idMR: MR2075280
.
Date available: 2009-05-05T16:45:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119461
.
Reference: [1] Beckley D.F.: An optimum system with modulo $11$.The Computer Bulletin 11 213-215 (1967).
Reference: [2] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (in Russian). MR 0218483
Reference: [3] Belousov V.D.: Elements of the Quasigroup Theory, A Special Course.Kishinev, 1981 (in Russian).
Reference: [4] Belousov V.D.: $n$-Ary Quasigroups.Shtiinta, Kishinev, 1972 (in Russian). MR 0354919
Reference: [5] Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups, I and II.preprints. MR 2174275
Reference: [6] Damm M.: Prüfziffersysteme über Quasigruppen.Diplomarbeit, Philipps-Universität Marburg, 1998.
Reference: [7] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Académiai Kiadó, Budapest, 1974. MR 0351850
Reference: [8] Ecker A., Poch G.: Check character systems.Computing 37/4 277-301 (1986). Zbl 0595.94012, MR 0869726
Reference: [9] Gumm H.P.: A new class of check-digit methods for arbitrary number systems.IEEE Trans. Inf. Th. IT, 31 (1985), 102-105. Zbl 0557.94013
Reference: [10] Kargapolov M.I., Merzlyakov Yu.I.: Foundations of Group Theory.Nauka, Moscow, 1977 (in Russian). Zbl 0508.20001, MR 0444748
Reference: [11] Laywine Ch.L., Mullen G.L.: Discrete Mathematics using Latin Squares.John Wiley & Sons, Inc., New York, 1998. Zbl 0957.05002, MR 1644242
Reference: [12] Mullen G.L., Shcherbacov V.: Properties of codes with one check symbol from a quasigroup point of view.Bul. Acad. Ştiinte Repub. Mold. Mat. 2002, no 3, pp.71-86. Zbl 1065.94021, MR 1991018
Reference: [13] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [14] Sade A.: Produit direct-singulier de quasigroupes othogonaux et anti-abeliens.Ann. Soc. Sci. Bruxelles, Ser. I, 74 (1960), 91-99. MR 0140599
Reference: [15] Schulz R.-H.: Check Character Systems and Anti-symmetric Mappings.H. Alt (Ed.): Computational Discrete Mathematics, Lecture Notes in Comput. Sci. 2122, 2001, pp.136-147. Zbl 1003.94537, MR 1911586
Reference: [16] Schulz R.-H.: Equivalence of check digit systems over the dicyclic groups of order $8$ and $12$.in J. Blankenagel & W. Spiegel, editor, Mathematikdidaktik aus Begeisterung für die Mathematik, pp.227-237, Klett Verlag, Stuttgart, 2000. Zbl 1011.94539
Reference: [17] Verhoeff J.: Error Detecting Decimal Codes.Vol. 29, Math. Centre Tracts. Math. Centrum Amsterdam, 1969. Zbl 0267.94016, MR 0256770
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_13.pdf 305.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo