Title:
|
A bifurcation theorem for noncoercive integral functionals (English) |
Author:
|
Faraci, Francesca |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
443-456 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established. (English) |
Keyword:
|
critical points |
Keyword:
|
noncoercive and nondifferentiable functionals |
Keyword:
|
bifurcation \break points |
MSC:
|
35B32 |
MSC:
|
35B38 |
MSC:
|
35J20 |
MSC:
|
47J15 |
MSC:
|
47J30 |
MSC:
|
49J10 |
idZBL:
|
Zbl 1098.35019 |
idMR:
|
MR2103139 |
. |
Date available:
|
2009-05-05T16:46:25Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119472 |
. |
Reference:
|
[1] Arcoya D., Boccardo L., Orsina L.: Existence of critical points for some noncoercive functionals.Ann. Inst. H. Poincaré Anal. Non Linéaire 18 4 (2001), 437-457. Zbl 1035.49007, MR 1841128 |
Reference:
|
[2] Boccardo L., Orsina L.: Existence and regularity of minima for integral functionals noncoercive in the energy space.Ann. Scuola. Norm. Sup. Pisa 25 (1997), 95-130. Zbl 1015.49014, MR 1655511 |
Reference:
|
[3] Boccardo L., Dall'Aglio A., Orsina L.: Existence and regularity results for some elliptic equation with degenerate coercivity. Special issue in honor of Calogero Vinti.Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51-81. MR 1645710 |
Reference:
|
[4] De Giorgi E.: Teoremi di semicontinuitá nel calcolo delle variazioni.Lecture Notes, Istituto Nazionale di Alta matematica, Roma, 1968. |
Reference:
|
[5] Ladyzenskaja O.A., Uralceva N.N.: Equations aux dérivées partielles de type elliptique.Dunod, Paris, 1968. MR 0239273 |
Reference:
|
[6] Ricceri B.: A general variational principle and some of its applications.J. Comput. Appl. Math. 113 (2000), 401-410. Zbl 0946.49001, MR 1735837 |
. |