Previous |  Up |  Next

Article

Title: Minimal $KC$-spaces are countably compact (English)
Author: Vidalis, T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 543-547
.
Category: math
.
Summary: In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1]. (English)
Keyword: $K$C-space
Keyword: weaker topology
MSC: 54A10
MSC: 54D30
idZBL: Zbl 1097.54027
idMR: MR2103148
.
Date available: 2009-05-05T16:47:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119481
.
Related article: http://dml.cz/handle/10338.dmlcz/133424
.
Reference: [1] Alas O.T., Wilson R.G.: Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set.Comment. Math. Univ. Carolinae 43.4 (2002), 641-652. Zbl 1090.54015, MR 2045786
Reference: [2] Fleissner W.G.: A $T_B$-space which is not Katětov $T_B$.Rocky Mountain J. Math. 10 (1980), 661-663. Zbl 0448.54021, MR 0590229
Reference: [3] Hewitt E.: A problem of set theoretic topology.Duke Math. J. 10 (1943), 309-333. Zbl 0060.39407, MR 0008692
Reference: [4] Larson R.: Complementary topological properties.Notices AMS 20 (1973), 176.
Reference: [5] Ramanathan A.: Minimal bicompact spaces.J. Indian Math. Soc. 19 (1948), 40-46. Zbl 0041.51502, MR 0028010
Reference: [6] Smythe N., Wilkins C.A.: Minimal Hausdorff and maximal compact spaces.J. Austral. Math. Soc. 3 (1963), 167-177. Zbl 0163.17201, MR 0154254
Reference: [7] Tong H.: Minimal bicompact spaces.Bull. Amer. Math. Soc. 54 (1948), 478-479.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_15.pdf 175.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo