Previous |  Up |  Next

Article

Title: Another proof of Derriennic's reverse maximal inequality for the supremum of ergodic ratios (English)
Author: Sato, Ryotaro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 155-158
.
Category: math
.
Summary: Using the ratio ergodic theorem for a measure preserving transformation in a $\sigma $-finite measure space we give a straightforward proof of Derriennic's reverse maximal inequality for the supremum of ergodic ratios. (English)
Keyword: $\sigma $-finite measure space
Keyword: measure preserving transformation
Keyword: conservative
Keyword: ergodic
Keyword: supremum of ergodic ratios
Keyword: maximal and reverse maximal inequalities
MSC: 28D05
MSC: 47A35
idZBL: Zbl 1150.28013
idMR: MR2223975
.
Date available: 2009-05-05T16:56:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119582
.
Reference: [1] Derriennic Y.: On the integrability of the supremum of ergodic ratios.Ann. Probability 1 (1973), 338-340. Zbl 0263.28015, MR 0352404
Reference: [2] Ephremidze L.: On the distribution function of the majorant of ergodic means.Studia Math. 103 (1992), 1-15. MR 1184098
Reference: [3] Ephremidze L.: A new proof of the ergodic maximal equality.Real Anal. Exchange 29 (2003/04), 409-411. MR 2063082
Reference: [4] Krengel U.: Ergodic Theorems.Walter de Gruyter, Berlin, 1985. Zbl 0649.47042, MR 0797411
Reference: [5] Ornstein D.: A remark on the Birkhoff ergodic theorem.Illinois J. Math. 15 (1971), 77-79. Zbl 0212.40102, MR 0274719
Reference: [6] Sato R.: Maximal functions for a semiflow in an infinite measure space.Pacific J. Math. 100 (1982), 437-443. Zbl 0519.28010, MR 0669336
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_14.pdf 213.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo