Previous |  Up |  Next

Article

Title: A new class of weakly $K$-analytic Banach spaces (English)
Author: Mercourakis, S.
Author: Stamati, E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 291-312
.
Category: math
.
Summary: In this paper we define and investigate a new subclass of those Banach spaces which are $K$-analytic in their weak topology; we call them strongly weakly $K$-analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly $K$-analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not every separable Banach space is SWKA; (ii) every separable SWKA Banach space not containing $\ell^1$ is Polish; (iii) we answer in the negative a question posed in [S-W] by constructing a subspace $X$ of the SWCG space $L^1[0,1]$ which is not SWCG. (English)
Keyword: WKA
Keyword: SWKA Banach spaces
Keyword: $K$-analytic space
Keyword: Baire space
Keyword: Polish space
MSC: 03E15
MSC: 03E75
MSC: 46B20
MSC: 46B26
MSC: 54H05
idZBL: Zbl 1150.46008
idMR: MR2241533
.
Date available: 2009-05-05T16:57:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119593
.
Reference: [A-M] Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces.Rocky Mountain J. Math. 23 395-446 (1993). Zbl 0797.46009, MR 1226181
Reference: [Ch] Christensen J.P.R.: Topology and Borel Structure.North-Holland, Amsterdam, 1974. Zbl 0273.28001, MR 0348724
Reference: [D-G-Z] Deville R., Godefroy G., Zizler V.: Smoothness and renorming in Banach spaces.Longman, Harlow, 1993. MR 1211634
Reference: [E] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [E-W] Edgar G.A., Wheller R.F.: Topological properties of Banach spaces.Pacific J. Math. 115 2 317-350 (1984). MR 0765190
Reference: [H-H-Z] Habala P., Hájek P., Zizler V.: Introduction to Banach Spaces I and II.Matfyzpress, Praha, 1996.
Reference: [J-R] Jayne J.E., Rogers C.A.: $K$-analytic sets.in Analytic Sets, Academic Press, London, 1980. Zbl 0589.54047
Reference: [K] Kuratowski K.: Topology.Vol. I (1966), Vol. II (1968), Academic Press, New York-London. Zbl 0849.01044, MR 0217751
Reference: [L-T] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I.Springer, Berlin-New York, 1977. Zbl 0362.46013, MR 0500056
Reference: [M] Mercourakis S.: On weakly countably determined Banach spaces.Trans. Amer. Math. Soc. 300 307-327 (1987). Zbl 0621.46018, MR 0871678
Reference: [M-N] Mercourakis S., Negrepontis S.: Banach Spaces and Topology II.Recent Progress in General Topology, M. Hušek and J. Van Mill (eds.), North-Holland, Amsterdam, 1992, pp.493-536. Zbl 0832.46005, MR 1229137
Reference: [N] Negrepontis S.: Banach Spaces and Topology.Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, pp.1045-1142. Zbl 0832.46005, MR 0776642
Reference: [R0] Rosenthal H.P.: A characterization of Banach spaces containing $\ell^1$.Proc. Nat. Acad. Sci. (USA) 71 2411-2413 (1974). MR 0358307
Reference: [R1] Rosenthal H.P.: The heredity problem for weakly compactly generated Banach spaces.Compositio Math. 28 83-111 (1974). Zbl 0298.46013, MR 0417762
Reference: [R2] Rosenthal H.P.: Weak*-Polish Banach spaces.J. Funct. Anal. 76 267-316 (1988). Zbl 0655.46011, MR 0924462
Reference: [St] Stegall C.: The Radon-Nikodym property in conjugate Banach spaces.Trans. Amer. Math. Soc. 206 213-223 (1975). Zbl 0318.46056, MR 0374381
Reference: [S] Stern J.: A Ramsey theorem for trees, with an application to Banach spaces.Israel J. Math. 29 179-188 (1978). Zbl 0378.46012, MR 0476554
Reference: [S-W] Schlüchtermann G., Wheeler R.F.: On Strongly WCG Banach spaces.Math. Z. 199 387-398 (1988). MR 0961818
Reference: [T] Talagrand M.: Espaces de Banach faiblement $\Cal K$-analytiques.Ann. of Math. 110 407-438 (1979). MR 0554378
Reference: [To] Todorčević S.: Compact subsets of the first Baire class.J. Amer. Math. Soc. 12 4 1179-1212 (1999). MR 1685782
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_8.pdf 322.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo