Previous |  Up |  Next

Article

Title: Non-singular precovers over polynomial rings (English)
Author: Bican, Ladislav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 369-377
.
Category: math
.
Summary: One of the results in my previous paper {\it On torsionfree classes which are not precover classes\/}, preprint, Corollary 3, states that for every hereditary torsion theory $\tau$ for the category $R$-mod with $\tau \geq\sigma$, $\sigma$ being Goldie's torsion theory, the class of all $\tau$-torsionfree modules forms a (pre)cover class if and only if $\tau$ is of finite type. The purpose of this note is to show that all members of the countable set $\frak M = \{R, R/\sigma (R), R[x_1,\dots ,x_n], R[x_1,\dots ,x_n]/\sigma(R[x_1,\dots ,x_n]), n <\omega \}$ of rings have the property that the class of all non-singular left modules forms a (pre)cover class if and only if this holds for an arbitrary member of this set. (English)
Keyword: hereditary torsion theory
Keyword: torsion theory of finite type
Keyword: Goldie's torsion theory
Keyword: non-singular module
Keyword: non-singular ring
Keyword: precover class
Keyword: cover class
MSC: 16D50
MSC: 16D80
MSC: 16S90
MSC: 18E40
idZBL: Zbl 1106.16032
idMR: MR2281000
.
Date available: 2009-05-05T16:57:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119599
.
Reference: [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Graduate Texts in Mathematics, vol.13 Springer, New York-Heidelberg (1974). Zbl 0301.16001, MR 0417223
Reference: [2] Bican L.: Torsionfree precovers.Contributions to General Algebra 15, Proceedings of the Klagenfurt Conference 2003 (AAA 66), Verlag Johannes Heyn, Klagenfurt, 2004, pp.1-6. Zbl 1074.16002, MR 2080845
Reference: [3] Bican L.: Precovers and Goldie's torsion theory.Math. Bohemica 128 (2003), 395-400. Zbl 1057.16027, MR 2032476
Reference: [4] Bican L.: On torsionfree classes which are not precover classes.preprint. Zbl 1166.16013, MR 2411109
Reference: [5] Bican L., El Bashir R., Enochs E.: All modules have flat covers.Proc. London Math. Soc. 33 (2001), 649-652. Zbl 1029.16002, MR 1832549
Reference: [6] Bican L., Torrecillas B.: Precovers.Czechoslovak Math. J. 53 (128) (2003), 191-203. Zbl 1016.16003, MR 1962008
Reference: [7] Bican L., Torrecillas B.: On covers.J. Algebra 236 (2001), 645-650. Zbl 0973.16002, MR 1813494
Reference: [8] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals.Marcel Dekker New York (1982). MR 0655412
Reference: [9] Golan J.: Torsion Theories.Pitman Monographs and Surveys in Pure and Applied Mathematics, 29 Longman Scientific and Technical, Harlow (1986). Zbl 0657.16017, MR 0880019
Reference: [10] Rim S.H., Teply M.L.: On coverings of modules.Tsukuba J. Math. 24 (2000), 15-20. Zbl 0985.16017, MR 1791327
Reference: [11] Teply M.L.: Torsion-free covers II.Israel J. Math. 23 (1976), 132-136. Zbl 0321.16014, MR 0417245
Reference: [12] Teply M.L.: Some aspects of Goldie's torsion theory.Pacific J. Math. 29 (1969), 447-459. Zbl 0174.06803, MR 0244323
Reference: [13] Xu J.: Flat Covers of Modules.Lecture Notes in Mathematics 1634 Springer, Berlin-Heidelberg-New York (1996). Zbl 0860.16002, MR 1438789
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_1.pdf 222.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo