Article
Keywords:
serial modules; direct sum decomposition
Summary:
A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module $U$. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.
References:
                        
[2] Dung N.V., Facchini A.: 
Direct sum decompositions of serial modules. J. Pure Appl. Algebra 133 (1998), 93-106. 
MR 1653699[3] Facchini A.: 
Module Theory; Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules. Birkhäuser, Basel, 1998. 
MR 1634015 | 
Zbl 0930.16001[4] Příhoda P.: 
On uniserial modules that are not quasi-small. J. Algebra, to appear. 
MR 2225779[5] Příhoda P.: 
A version of the weak Krull-Schmidt theorem for infinite families of uniserial modules. Comm. Algebra, to appear. 
MR 2224888