Previous |  Up |  Next

Article

Title: A new relationship between decomposability and convexity (English)
Author: Satco, Bianca
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 457-466
.
Category: math
.
Summary: In the present work we prove that, in the space of Pettis integrable functions, any subset that is decomposable and closed with respect to the topology induced by the so-called Alexiewicz norm $\left| \left\|\cdot \right\| \right|$ \big(where $\left| \left\| f\right\| \right| =\sup_{[a,b] \subset [0,1]} \big\| \int_{a}^{b}f(s) ds \big\|$\big) is convex. As a consequence, any such family of Pettis integrable functions is also weakly closed. (English)
Keyword: Pettis integral
Keyword: decomposable set
Keyword: convex set
Keyword: Alexiewicz norm
MSC: 28B05
MSC: 46A20
MSC: 46A55
MSC: 46E30
MSC: 46E40
MSC: 46G10
MSC: 52A07
MSC: 54A10
idZBL: Zbl 1150.46325
idMR: MR2281007
.
Date available: 2009-05-05T16:58:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119606
.
Reference: [ACT] Azzam D.L., Castaing C., Thibault L.: Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics.Control Cybernet. 31 3 (2002), 659-693. MR 1978746
Reference: [CaV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Mathematics 580, Springer, Berlin-New York, 1977. Zbl 0346.46038, MR 0467310
Reference: [Chu] Chuong P.V.: A density theorem with an application in relaxation of nonconvex-valued differential equations.Séminaire d'Analyse convexe Montpellier, Exposé n${^o}$2, 1985. Zbl 0657.35128, MR 0857774
Reference: [DiU] Diestel J., Uhl J.J., Jr.: Vector Measures.Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. Zbl 0521.46035, MR 0453964
Reference: [Fry] Fryszowski A.: Continuous selections for a class of non-convex multivalued maps.Studia Math. T. LXXVI (1983), 163-174.
Reference: [Gut] Gutman S.: Topological equivalence in the space of integrable vector-valued functions.Proc. Amer. Math. Soc. 93 1 (1985), 40-42. Zbl 0529.46027, MR 0766523
Reference: [HiU] Hiai F., Umegaki H.: Integrals, conditional expectations, and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504
Reference: [HuP1] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. I. Theory.Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775
Reference: [HuP2] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. II. Applications.Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926
Reference: [Kni] Knight W.J.: Solutions of differential equations in Banach spaces.Duke Math. J. 41 (1974), 437-442. MR 0344624
Reference: [Mus] Musial K.: Topics in the theory of Pettis integration.in: School of Measure Theory and Real Analysis (Grado, 1991), Rend. Istit. Mat. Univ. Trieste 23 (1991), 177-262. Zbl 0798.46042, MR 1248654
Reference: [Ole] Olech C.: Decomposability as a substitute for convexity.Multifunctions and Integrands (Catania, 1983), Lecture Notes in Math. 1091, Springer, Berlin, 1984, pp.193-205. Zbl 0592.28008, MR 0785586
Reference: [Pod] Podczeck K.: On core-Walras equivalence in Banach spaces when feasibility is defined by the Pettis integral.J. Math. Econom. 40 (2004), 429-463. Zbl 1096.91047, MR 2070705
Reference: [Sch1] Schechter E.: Evolution generated by continuous dissipative plus compact operators.Bull. London Math. Soc. 13 (1981), 303-308. Zbl 0443.34061, MR 0620042
Reference: [Sch2] Schechter E.: Perturbations of regularizing maximal monotone operators.Israel J. Math. 43 (1982), 49-61. Zbl 0516.34060, MR 0728878
Reference: [Sik] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations.J. Inequal. Appl. 6 (2001), 325-338. Zbl 0992.45006, MR 1889019
Reference: [Sze] Szep A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197-203. MR 0330688
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_8.pdf 233.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo