Title:
|
A new relationship between decomposability and convexity (English) |
Author:
|
Satco, Bianca |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
47 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
457-466 |
. |
Category:
|
math |
. |
Summary:
|
In the present work we prove that, in the space of Pettis integrable functions, any subset that is decomposable and closed with respect to the topology induced by the so-called Alexiewicz norm $\left| \left\|\cdot \right\| \right|$ \big(where $\left| \left\| f\right\| \right| =\sup_{[a,b] \subset [0,1]} \big\| \int_{a}^{b}f(s) ds \big\|$\big) is convex. As a consequence, any such family of Pettis integrable functions is also weakly closed. (English) |
Keyword:
|
Pettis integral |
Keyword:
|
decomposable set |
Keyword:
|
convex set |
Keyword:
|
Alexiewicz norm |
MSC:
|
28B05 |
MSC:
|
46A20 |
MSC:
|
46A55 |
MSC:
|
46E30 |
MSC:
|
46E40 |
MSC:
|
46G10 |
MSC:
|
52A07 |
MSC:
|
54A10 |
idZBL:
|
Zbl 1150.46325 |
idMR:
|
MR2281007 |
. |
Date available:
|
2009-05-05T16:58:38Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119606 |
. |
Reference:
|
[ACT] Azzam D.L., Castaing C., Thibault L.: Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics.Control Cybernet. 31 3 (2002), 659-693. MR 1978746 |
Reference:
|
[CaV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Mathematics 580, Springer, Berlin-New York, 1977. Zbl 0346.46038, MR 0467310 |
Reference:
|
[Chu] Chuong P.V.: A density theorem with an application in relaxation of nonconvex-valued differential equations.Séminaire d'Analyse convexe Montpellier, Exposé n${^o}$2, 1985. Zbl 0657.35128, MR 0857774 |
Reference:
|
[DiU] Diestel J., Uhl J.J., Jr.: Vector Measures.Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. Zbl 0521.46035, MR 0453964 |
Reference:
|
[Fry] Fryszowski A.: Continuous selections for a class of non-convex multivalued maps.Studia Math. T. LXXVI (1983), 163-174. |
Reference:
|
[Gut] Gutman S.: Topological equivalence in the space of integrable vector-valued functions.Proc. Amer. Math. Soc. 93 1 (1985), 40-42. Zbl 0529.46027, MR 0766523 |
Reference:
|
[HiU] Hiai F., Umegaki H.: Integrals, conditional expectations, and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504 |
Reference:
|
[HuP1] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. I. Theory.Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775 |
Reference:
|
[HuP2] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis, Vol. II. Applications.Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926 |
Reference:
|
[Kni] Knight W.J.: Solutions of differential equations in Banach spaces.Duke Math. J. 41 (1974), 437-442. MR 0344624 |
Reference:
|
[Mus] Musial K.: Topics in the theory of Pettis integration.in: School of Measure Theory and Real Analysis (Grado, 1991), Rend. Istit. Mat. Univ. Trieste 23 (1991), 177-262. Zbl 0798.46042, MR 1248654 |
Reference:
|
[Ole] Olech C.: Decomposability as a substitute for convexity.Multifunctions and Integrands (Catania, 1983), Lecture Notes in Math. 1091, Springer, Berlin, 1984, pp.193-205. Zbl 0592.28008, MR 0785586 |
Reference:
|
[Pod] Podczeck K.: On core-Walras equivalence in Banach spaces when feasibility is defined by the Pettis integral.J. Math. Econom. 40 (2004), 429-463. Zbl 1096.91047, MR 2070705 |
Reference:
|
[Sch1] Schechter E.: Evolution generated by continuous dissipative plus compact operators.Bull. London Math. Soc. 13 (1981), 303-308. Zbl 0443.34061, MR 0620042 |
Reference:
|
[Sch2] Schechter E.: Perturbations of regularizing maximal monotone operators.Israel J. Math. 43 (1982), 49-61. Zbl 0516.34060, MR 0728878 |
Reference:
|
[Sik] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations.J. Inequal. Appl. 6 (2001), 325-338. Zbl 0992.45006, MR 1889019 |
Reference:
|
[Sze] Szep A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197-203. MR 0330688 |
. |