Previous |  Up |  Next

Article

Title: Network character and tightness of the compact-open topology (English)
Author: Ball, Richard N.
Author: Hager, Anthony W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 473-482
.
Category: math
.
Summary: For Tychonof\text{}f $X$ and $\alpha$ an infinite cardinal, let $\alpha \operatorname{def} X := $ the minimum number of $\alpha $\,cozero-sets of the Čech-Stone compactification which intersect to $X$ (generalizing $\Bbb R$-defect), and let $\operatorname{rt} X := \min _\alpha \max (\alpha , \alpha \operatorname{def} X)$. Give $C(X)$ the compact-open topology. It is shown that $\tau C(X)\leq n\chi C(X) \leq \operatorname{rt}X=\max (L(X),L(X) \operatorname{def} X)$, where: $\tau$ is tightness; $n\chi$ is the network character; $L(X)$ is the Lindel"{o}f number. For example, it follows that, for $X$ Čech-complete, $\tau C(X)=L(X)$. The (apparently new) cardinal functions $n\chi C$ and $\operatorname{rt}$ are compared with several others. (English)
Keyword: compact-open topology
Keyword: network character
Keyword: tightness
Keyword: defect
Keyword: Lindelöf number
MSC: 22A99
MSC: 46E10
MSC: 54A25
MSC: 54C35
MSC: 54D20
MSC: 54H11
idZBL: Zbl 1150.54016
idMR: MR2281009
.
Date available: 2009-05-05T16:58:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119608
.
Reference: [BH] Ball R., Hager A.: Epi-topology and epi-convergence in archimedean lattice-ordered groups with unit.submitted.
Reference: [CB] Comfort W., Balaglou G.: Compact-covering numbers.Fund. Math. 131 (1988), 69-82. MR 0970915
Reference: [CN] Comfort W., Negrepontis S.: Continuous pseudometrics.Lecture Notes in Pure and Appl. Math. 14, Dekker, New York, 1975. Zbl 0306.54004, MR 0410618
Reference: [CT] Comfort W., Retta T.: Generalized perfect maps and a theorem of I. Juhász.Lecture Notes in Pure and Appl. Math. 95, Dekker, New York, 1985, pp.79-102. Zbl 0564.54012, MR 0789263
Reference: [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [H] Hušek M.: The class of $k$-compact spaces is simple.Math. Z. 110 (1969), 123-126. MR 0244947
Reference: [Mc] McCoy R.: Function spaces which are $k$-spaces.Topology Proc. 5 (1980), 139-154. MR 0624467
Reference: [McN] McCoy R., Ntantu I.: Topological Properties of Spaces of Continuous Functions.Lecture Notes in Mathematics 1315, Springer, Berlin, 1988. Zbl 0647.54001, MR 0953314
Reference: [M1] Mrowka S.: On $E$-compact spaces. II.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 597-605. Zbl 0161.19603, MR 0206896
Reference: [M2] Mrowka S.: $\Cal R$-compact spaces with weight $X< {Exp}_{\Cal R}X$.Proc. Amer. Math. Soc. 128 (2000), 3701-3709. MR 1690997
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_10.pdf 237.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo