Previous |  Up |  Next

Article

Title: Supremum properties of Galois-type connections (English)
Author: Száz, Árpád
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 569-583
.
Category: math
.
Summary: In a former paper, motivated by a recent theory of relators (families of relations), we have investigated increasingly regular and normal functions of one preordered set into another instead of Galois connections and residuated mappings of partially ordered sets. A function $f$ of one preordered set $X$ into another $Y$ has been called \smallskip (1) increasingly \,$g$-normal, for some function $g$ of $Y$ into $X$, if for any $x\in X$ and $y\in Y$ we have $f(x)\leq y$ if and only if $x\leq g(y)$; \smallskip (2) increasingly $\varphi $-regular, for some function $\varphi$ of $X$ into itself, if for any $x_{1}, x_{2}\in X$ we have $x_{1}\leq \varphi (x_{2})$ if and only if $f(x_{1})\leq f(x_{2})$. \smallskip In the present paper, we shall prove that if $f$ is an increasingly regular function of $X$ onto $Y$, or $f$ is an increasingly normal function of $X$ into $Y$, then $f[\sup (A)]\subset \sup (f[A])$ for all $A\subset X$. Moreover, we shall also prove some more delicate, but less important supremum properties of such functions. (English)
Keyword: preordered sets
Keyword: Galois connections (residuated mappings)
Keyword: supremum properties
MSC: 03E30
MSC: 04A05
MSC: 06A06
MSC: 06A15
MSC: 54E15
idZBL: Zbl 1150.06300
idMR: MR2337412
.
Date available: 2009-05-05T16:59:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119618
.
Reference: [1] Birkhoff G.: Lattice Theory.Amer. Math. Soc. Colloq. Publ. 25 Providence, Rhode Island (1967). Zbl 0153.02501, MR 0598630
Reference: [2] Blyth T.S., Janowitz M.F.: Residuation Theory.Pergamon Press Oxford (1972). Zbl 0301.06001, MR 0396359
Reference: [3] Boros Z., Száz Á.: Infimum and supremum completeness properties of ordered sets without axioms.Tech. Rep., Inst. Math., Univ. Debrecen 2004/4 1-6.
Reference: [4] Boros Z., Száz Á.: Finite and conditional completeness properties of generalized ordered sets.Rostock. Math. Kolloq. 59 (2005), 75-86. Zbl 1076.06003, MR 2169501
Reference: [5] Davey B.A., Priestley H.A.: Introduction to Lattices and Order.Cambridge University Press Cambridge (2002). Zbl 1002.06001, MR 1902334
Reference: [6] Ganter B., Wille R.: Formal Concept Analysis.Springer Berlin (1999). Zbl 0909.06001, MR 1707295
Reference: [7] Pataki G.: On the extensions, refinements and modifications of relators.Math. Balkanica (N.S.) 15 (2001), 155-186. Zbl 1042.08001, MR 1882531
Reference: [8] Pickert G.: Bemerkungen über Galois-Verbindungen.Arch. Math. 3 (1952), 285-289. Zbl 0047.26402, MR 0051816
Reference: [9] Száz Á.: Structures derivable from relators.Singularité 3 (1992), 14-30.
Reference: [10] Száz Á.: Refinements of relators.Tech. Rep., Inst. Math., Univ. Debrecen 1993/76 1-19.
Reference: [11] Száz Á.: Upper and lower bounds in relator spaces.Serdica Math. J. 29 (2003), 239-270. MR 2017088
Reference: [12] Száz Á.: Lower and upper bounds in ordered sets without axioms.Tech. Rep., Inst. Math., Univ. Debrecen 2004/1 1-11.
Reference: [13] Száz Á.: The importance of reflexivity, transitivity, antisymmetry and totality in generalized ordered sets.Tech. Rep., Inst. Math., Univ. Debrecen 2004/2 1-15.
Reference: [14] Száz Á.: Galois-type connections and closure operations on preordered sets.Tech. Rep., Inst. Math., Univ. Debrecen 2005/1 1-28.
Reference: [15] Száz Á.: Galois-type connections on power sets and their applications to relators.Tech. Rep., Inst. Math., Univ. Debrecen 2005/2 1-38.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_3.pdf 223.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo