Previous |  Up |  Next

Article

Title: Spaces of continuous characteristic functions (English)
Author: Buzyakova, Raushan Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 599-608
.
Category: math
.
Summary: We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf. (English)
Keyword: $C_p(X, Y)$
Keyword: subspace of ordinals
Keyword: countable extent
Keyword: Lindel" of space
MSC: 54C35
MSC: 54D20
MSC: 54F05
idZBL: Zbl 1150.54017
idMR: MR2337414
.
Date available: 2009-05-05T16:59:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119620
.
Reference: [AR1] Arhangelskii A.: Topological Function Spaces.Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR 1144519
Reference: [AR2] Arhangelskii A.: Some Metrization Theorems (Russian).Uspehi Mat. Nauk 18 5 (113) 139-145 (1963). MR 0156318
Reference: [ASA] Asanov M.O.: On cardinal invariants of function spaces.Modern Topology and Set Theory, Igevsk, (2), 1979, pp.8-12.
Reference: [BUZ] Buzyakova R.Z.: In search for Lindelöf $C_p$'s.Comment. Math. Univ. Carolin. 45 (2004), 1 145-151. Zbl 1098.54010, MR 2076866
Reference: [ENG] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321
Reference: [NAH] Nahmanson L.B.: Lindelöfness in function spaces.Fifth Teraspol Simposium on Topology and its Applications, Kishinev, 1985, 183.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_5.pdf 224.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo