Previous |  Up |  Next

Article

Title: Some versions of relative paracompactness and their absolute embeddings (English)
Author: Kawaguchi, Shinji
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 1
Year: 2007
Pages: 147-166
.
Category: math
.
Summary: Arhangel'skii [Sci. Math. Jpn. 55 (2002), 153–201] defined notions of relative paracompactness in terms of locally finite open partial refinement and asked if one can generalize the notions above to the well known Michael's criteria of paracompactness in [17] and [18]. In this paper, we consider some versions of relative paracompactness defined by locally finite (not necessarily open) partial refinement or locally finite closed partial refinement, and also consider closure-preserving cases, such as $1$-lf-, $1$-cp-, $\alpha$-lf, $\alpha$-cp-paracompactness and so on. Moreover, on their absolute embeddings, we have the following results. Theorem 1. A Tychonoff space $Y$ is $1$-lf- (or equivalently, $1$-cp-) paracompact in every larger Tychonoff space if and only if $Y$ is Lindelöf. Theorem 2. A Tychonoff space $Y$ is $\alpha$-lf- (or equivalently, $\alpha$-cp-) paracompact in every larger Tychonoff space if and only if $Y$ is compact. We also show that in Theorem 1, ``every larger Tychonoff space'' can be replaced by ``every larger Tychonoff space containing $Y$ as a closed subspace''. But, this replacement is not available for Theorem 2. (English)
Keyword: $1$-paracompactness of $Y$ in $X$
Keyword: $2$-paracompactness of $Y$ in $X$
Keyword: Aull-para-compactness of $Y$ in $X$
Keyword: $\alpha$-paracompactness of $Y$ in $X$
Keyword: $1$-lf-paracompactness of $Y$ in $X$
Keyword: $2$-lf-paracompactness of $Y$ in $X$
Keyword: Aull-lf-paracompactness of $Y$ in $X$
Keyword: $\alpha$-lf-paracompactness of $Y$ in $X$
Keyword: $1$-cp-paracompactness of $Y$ in $X$
Keyword: $2$-cp-paracompactness of $Y$ in $X$
Keyword: Aull-cp-paracompactness of $Y$ in $X$
Keyword: $\alpha$-cp-paracompactness of $Y$ in $X$
Keyword: absolute embedding
Keyword: compact
Keyword: Lindelöf
MSC: 54C20
MSC: 54C25
MSC: 54D10
MSC: 54D20
MSC: 54D30
idZBL: Zbl 1199.54144
idMR: MR2338836
.
Date available: 2009-05-05T17:01:54Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119645
.
Reference: [1] Arhangel'skii A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. Zbl 0848.54016, MR 1397067
Reference: [2] Arhangel'skii A.V.: From classic topological invariants to relative topological properties.Sci. Math. Jpn. 55 (2002), 153-201. MR 1885790
Reference: [3] Arhangel'skii A.V., Genedi H.M.M.: Beginnings of the theory of relative topological properties.in: General Topology. Spaces and Mappings, MGU, Moscow, 1989, pp.3-48.
Reference: [4] Arhangel'skii A.V., Gordienko I.Ju.: Relative symmetrizability and metrizability.Comment. Math. Univ. Carolin. 37 (1996), 757-774. Zbl 0886.54001, MR 1440706
Reference: [5] Aull C.E.: Paracompact subsets.Proc. Second Prague Topological Symposium, Academia, Prague, 1966, pp.45-51. Zbl 0227.54015, MR 0234420
Reference: [6] Aull C.E.: Paracompact and countably paracompact subsets.Proc. Kanpur Topological Conference, 1968, pp.49-53. Zbl 0227.54015
Reference: [7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [9] Gordienko I.Ju.: A characterization of relative Lindelöf property by relative paracompactness.General Topology. Spaces, mappings and functors, MUG, Moscow, 1992, pp.40-44.
Reference: [10] Grabner E.M., Grabner G.C., Miyazaki K.: On properties of relative metacompactness and paracompactness type.Topology Proc. 25 (2000), 145-177. Zbl 1026.54016, MR 1925682
Reference: [11] Grabner E.M., Grabner G.C., Miyazaki K., Tartir J.: Relative collectionwise normality.Appl. Gen. Topol. 5 (2004), 199-212. Zbl 1066.54025, MR 2121789
Reference: [12] Grabner E.M., Grabner G.C., Miyazaki K., Tartir J.: Relationships among properties of relative paracompactness type.Questions Answers Gen. Topology 22 (2004), 91-104. Zbl 1076.54018, MR 2092833
Reference: [13] Kawaguchi S., Sokei R.: Some relative properties on normality and paracompactness, and their absolute embeddings.Comment. Math. Univ. Carolin. 46 (2005), 475-495. Zbl 1121.54018, MR 2174526
Reference: [14] Lupia nez F.G.: On covering properties.Math. Nachr. 141 (1989), 37-43.
Reference: [15] Lupia nez F.G.: $\alpha$-paracompact subsets and well-situated subsets.Czechoslovak Math. J. {38}(113) (1988), 191-197. MR 0946286
Reference: [16] Lupia nez F.G., Outerelo E.: Paracompactness and closed subsets.Tsukuba J. Math. 13 (1989), 483-493. MR 1030230
Reference: [17] Michael E.: A note on paracompact spaces.Proc. Amer. Math. Soc. 4 (1953), 831-838. Zbl 0052.18701, MR 0056905
Reference: [18] Michael E.: Another note on paracompact spaces.Proc. Amer. Math. Soc. 8 (1957), 822-828. Zbl 0078.14805, MR 0087079
Reference: [19] Yamazaki K.: Aull-paracompactness and strong star-normality of subspaces in topological spaces.Comment. Math. Univ. Carolin. 45 (2004), 743-747. Zbl 1099.54023, MR 2103089
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-1_12.pdf 295.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo