Previous |  Up |  Next

Article

Title: An interesting class of ideals in subalgebras of $C(X)$ containing $C^*(X)$ (English)
Author: Acharyya, Sudip Kumar
Author: De, Dibyendu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 273-280
.
Category: math
.
Summary: In the present paper we give a duality between a special type of ideals of subalgebras of $C(X)$ containing $C^*(X)$ and $z$-filters of $\beta X$ by generalization of the notion $z$-ideal of $C(X)$. We also use it to establish some intersecting properties of prime ideals lying between $C^*(X)$ and $C(X)$. For instance we may mention that such an ideal becomes prime if and only if it contains a prime ideal. Another interesting one is that for such an ideal the residue class ring is totally ordered if and only if it is prime. (English)
Keyword: Stone-Čech compactification
Keyword: rings of continuous functions
Keyword: maximal ideals
Keyword: $z^{\beta}_A$-ideals
MSC: 54C30
MSC: 54C35
MSC: 54C40
MSC: 54D35
idZBL: Zbl 1199.54153
idMR: MR2338095
.
Date available: 2009-05-05T17:02:51Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119657
.
Reference: [1] Acharyya S.K., Chattopadhyay K.C., Ghosh D.P.: A class of subalgebras of $ C(X)$ and the associated compactness.Kyungpook Math. J. 41 2 (2001), 323-324. Zbl 1012.54024, MR 1876202
Reference: [2] Byun H.L., Watson S.: Prime and maximal ideals of $ C(X)$.Topology Appl. 40 (1991), 45-62. MR 1114090
Reference: [3] De D., Acharyya S.K.: Characterization of function rings between $C^*(X)$ and $C(X)$.Kyungpook Math. J. 46 (2006), 503-507. Zbl 1120.54014, MR 2282652
Reference: [4] Dominguege J.M., Gomez J., Mulero M.A.: Intermediate algebras between $C^{*}(X)$ and $C(X)$ as rings of fractions of $ C^*(X)$.Topology Appl. 77 (1997), 115-130. MR 1451646
Reference: [5] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [6] Henriksen M., Johnson D.G.: On the structure of a class of archimedean lattice ordered algebras.Fund. Math. 50 (1961), 73-94. Zbl 0099.10101, MR 0133698
Reference: [7] Plank D.: On a class of subalgebras of $ C(X)$ with application to $\beta X-X$.Fund. Math. 64 (1969), 41-54. MR 0244953
Reference: [8] Redlin L., Watson S.: Maximal ideals in subalgebras of $ C(X)$.Proc. Amer. Math. Soc. 100 (1987), 763-766. Zbl 0622.54011, MR 0894451
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_9.pdf 214.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo