Previous |  Up |  Next

Article

Title: On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$ (English)
Author: Bildhauer, M.
Author: Fuchs, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 321-341
.
Category: math
.
Summary: We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integrals like $\int_\Omega [(1+|\partial_1 u|^{2})^{p/2}+(1+|\partial_2 u|^{2})^{q/2}]\,dx$ or its degenerate variant $\int_\Omega [|\partial_1 u|^p+|\partial_2 u|^q]\,dx$ with exponents $2\leq p < q < \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. {\bf 16} (2003), 177--186. We prove interior $C^{1,\alpha}$- respectively $C^{1}$-regularity of $u$ under the condition that $q < 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. {\bf 31} (2006), 349--362. (English)
Keyword: non-standard growth
Keyword: vector case
Keyword: local minimizers
Keyword: interior regularity
Keyword: problems of higher order
MSC: 35J35
MSC: 35J50
MSC: 49N60
idZBL: Zbl 1199.49075
idMR: MR2338100
.
Date available: 2009-05-05T17:03:16Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119662
.
Reference: [Ad] Adams R.A.: Sobolev Spaces.Academic Press, New York-San Francisco-London, 1975. Zbl 1098.46001, MR 0450957
Reference: [AF] Acerbi E., Fusco N.: Partial regularity under anisotropic $(p,q)$ growth conditions.J. Differential Equations 107 1 (1994), 46-67. Zbl 0807.49010, MR 1260848
Reference: [Bi] Bildhauer M.: Convex variational problems: linear, nearly linear and anisotropic growth conditions.Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003. Zbl 1033.49001, MR 1998189
Reference: [BF1] Bildhauer M., Fuchs M.: Partial regularity for variational integrals with $(s,\mu, q)$-growth.Calc. Var. Partial Differential Equations 13 (2001), 537-560. Zbl 1018.49026, MR 1867941
Reference: [BF2] Bildhauer M., Fuchs M.: Two-dimensional anisotropic variational problems.Calc. Var. Partial Differential Equations 16 (2003), 177-186. MR 1956853
Reference: [BF3] Bildhauer M., Fuchs M.: Higher-order variational problems on two-dimensional domains.Ann. Acad. Sci. Fenn. Math. 31 (2006), 349-362. Zbl 1136.49027, MR 2248820
Reference: [BF4] Bildhauer M., Fuchs M.: Smoothness of weak solutions of the Ramberg/Osgood equations on plane domains.Z. Angew. Math. Mech. 87.1 (2007), 70-76. Zbl 1104.74030, MR 2287173
Reference: [BF5] Bildhauer M., Fuchs M.: $C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems.Calc. Var. Partial Differential Equations 24 (2005), 309-340. MR 2174429
Reference: [BF6] Bildhauer M., Fuchs M.: A regularity result for stationary electrorheological fluids in two dimensions.Math. Methods Appl. Sci. 27 (2004), 1607-1617. Zbl 1058.76073, MR 2077446
Reference: [BFZ1] Bildhauer M., Fuchs M., Zhong X.: A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids.Manuscripta Math. 116 (2005), 135-156. Zbl 1116.49018, MR 2122416
Reference: [BFZ2] Bildhauer M., Fuchs M., Zhong X.: Variational integrals with a wide range of aniso- tropy.to appear in Algebra i Analiz.
Reference: [BFZ3] Bildhauer M., Fuchs M., Zhong X.: On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids.Algebra i Analiz 18 (2006), 1-23. MR 2244934
Reference: [ELM1] Esposito L., Leonetti F., Mingione G.: Regularity results for minimizers of irregular integrals with $(p,q)$-growth.Forum Math. 14 (2002), 245-272. Zbl 0999.49022, MR 1880913
Reference: [ELM2] Esposito L., Leonetti F., Mingione G.: Regularity for minimizers of functionals with $p$-$q$ growth.Nonlinear Differential Equations Appl. 6 (1999), 133-148. Zbl 0928.35044, MR 1694803
Reference: [ELM3] Esposito L., Leonetti F., Mingione G.: Sharp regularity for functionals with $(p,q)$ growth.J. Differential Equations 204 (2004), 5-55. Zbl 1072.49024, MR 2076158
Reference: [Fr] Frehse, J.: Two dimensional variational problems with thin obstacles.Math. Z. 143 (1975), 279-288. Zbl 0295.49003, MR 0380550
Reference: [FrS] Frehse J., Seregin G.: Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening.Proc. St. Petersburg Math. Soc. 5 (1998), 184-222; English translation: Amer. Math. Soc. Transl. II 193 (1999), 127-152. Zbl 0973.74033, MR 1736908
Reference: [FS] Fusco N., Sbordone C.: Some remarks on the regularity of minima of anisotropic integrals.Comm. Partial Differential Equations 18 (1993), 153-167. Zbl 0795.49025, MR 1211728
Reference: [Gi1] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Annals of Mathematics Studies 105, Princeton University Press, Princeton, 1983. Zbl 0516.49003, MR 0717034
Reference: [Gi2] Giaquinta M.: Growth conditions and regularity, a counterexample.Manuscripta Math. 59 (1987), 245-248. Zbl 0638.49005, MR 0905200
Reference: [GT] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order.Grundlehren der Mathematischen Wissenschaften 224, second ed., revised third print, Springer, Berlin-Heidelberg-New York, 1998. Zbl 1042.35002
Reference: [Ho] Hong M.C.: Some remarks on the minimizers of variational integrals with non standard growth conditions.Boll. Un. Mat. Ital. A (7) 6 (1992), 91-101. Zbl 0768.49022, MR 1164739
Reference: [KKM] Kauhanen J., Koskela P., Malý J.: On functions with derivatives in a Lorentz space.Manuscripta Math. 100 (1999), 87-101. MR 1714456
Reference: [Ma1] Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions.Arch. Rat. Mech. Anal. 105 (1989), 267-284. Zbl 0667.49032, MR 0969900
Reference: [Ma2] Marcellini P.: Regularity and existence of solutions of elliptic equations with $(p,q)$-growth conditions.J. Differential Equations 90 (1991), 1-30. Zbl 0724.35043, MR 1094446
Reference: [Ma3] Marcellini P.: Regularity for elliptic equations with general growth conditions.J. Differential Equations 105 (1993), 296-333. Zbl 0812.35042, MR 1240398
Reference: [UU] Ural'tseva N.N., Urdaletova A.B.: Boundedness of gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations.Vestnik Leningrad. Univ. Mat. Mekh. Astronom no. 4 (1983), 50-56 (in Russian); English translation: Vestnik Leningrad. Univ. Math 16 (1984), 263-270. MR 0725829
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_14.pdf 302.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo