Title:
|
SP-scattered spaces; a new generalization of scattered spaces (English) |
Author:
|
Henriksen, M. |
Author:
|
Raphael, R. |
Author:
|
Woods, R. G. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
487-505 |
. |
Category:
|
math |
. |
Summary:
|
The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname{Is}(X)$ (resp. $P(X))$. Recall that $X$ is said to be {\it scattered\/} if $\operatorname{Is}(A)\neq \varnothing $ whenever $\varnothing \neq A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \neq A\subset X$, we say that $X$ is {\it SP-scattered\/}. Many theorems about scattered spaces hold or have analogs for {\it SP-scattered\/} spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension. (English) |
Keyword:
|
scattered spaces |
Keyword:
|
SP-scattered spaces |
Keyword:
|
CB-index |
Keyword:
|
sp-index |
Keyword:
|
$P$-points |
Keyword:
|
$P$-spaces |
Keyword:
|
strong $P$-points |
Keyword:
|
RG-spaces |
Keyword:
|
$z$-dimension |
Keyword:
|
locally finite |
Keyword:
|
Lindelöf spaces |
Keyword:
|
paracompact spaces |
Keyword:
|
$P$-coreflection |
Keyword:
|
$G_{\delta}$-topology |
Keyword:
|
product spaces |
MSC:
|
54G10 |
MSC:
|
54G12 |
idZBL:
|
Zbl 1199.54188 |
idMR:
|
MR2374129 |
. |
Date available:
|
2009-05-05T17:04:16Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119674 |
. |
Reference:
|
[A87] Alster K.: On spaces whose product with every Lindelöf space is Lindelöf.Colloq. Math. 54 (1987), 171-178. Zbl 0688.54013, MR 0948511 |
Reference:
|
[A88] Alster K.: On the class of all spaces of weight not greater than $ømega_{1}$ whose Cartesian product with every Lindelöf space is Lindelöf.Fund. Math. 129 (1988), 133-140. MR 0959437 |
Reference:
|
[A06] Alster K.: On the class of $ømega_{1}$-metrizable spaces whose product with every paracompact space is paracompact.Topology Appl. 153 (2006), 2508-2517. Zbl 1101.54012, MR 2243730 |
Reference:
|
[AE72] Alster K., Engelking R.: Subparacompactness and product spaces.Bull. Acad. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 20 (1972), 763-767. Zbl 0238.54018, MR 0313992 |
Reference:
|
[B76] Blair R.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542 |
Reference:
|
[CN75] Comfort W.W., Negrepontis S.: Continuous Pseudometrics.Marcel Dekker, Inc., New York, 1975. Zbl 0306.54004, MR 0410618 |
Reference:
|
[E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[G84] Gewand M.: The Lindelöf degree of scattered spaces and their products.J. Austral. Math. Soc. 37 (1984), 98-105. Zbl 0545.54014, MR 0742247 |
Reference:
|
[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[HRW02] Henriksen M., Raphael R., Woods R.G.: A minimal regular ring extension of $C(X)$.Fund. Math. 172 (2002), 1-17. Zbl 0995.46022, MR 1898399 |
Reference:
|
[KR77] Kannan V., Rajagopalan M.: Scattered spaces II Illinois J. Math..21 (1977), 735-751. MR 0474180 |
Reference:
|
[LR81] Levy R., Rice M.: Normal $P$-spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. Zbl 0496.54034, MR 0652582 |
Reference:
|
[MRW72] Mack J., Rayburn M., Woods R.G.: Local topological properties and one point extensions.Canad. J. Math. 24 (1972), 338-348. Zbl 0242.54019, MR 0295297 |
Reference:
|
[MZ05] Martinez J., Zenk E.: Dimension in algebraic frames II. Applications to frames of ideals in $C(X)$.Comment. Math. Univ. Carolin. 46 (2005), 607-636. Zbl 1121.06009, MR 2259494 |
Reference:
|
[Na70] Nagami K.: Dimension Theory.Academic Press, New York, 1970. Zbl 0224.54060, MR 0271918 |
Reference:
|
[No71] Noble N.: Products with closed projections, I.Trans. Amer. Math. Soc. 160 (1971), 169-183. MR 0283749 |
Reference:
|
[PW88] Porter J., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341 |
Reference:
|
[R77] Rajagopalan M.: Scattered spaces III.J. Indian Math. Soc. 41 (1977), 405-427 (1978). Zbl 0463.54034, MR 0515395 |
Reference:
|
[RW83] Rudin M., Watson S.: Countable products of scattered paracompact spaces.Proc. Amer. Math. Soc. 89 (1983), 551-552. Zbl 0518.54021, MR 0715885 |
Reference:
|
[S59] Semadeni Z.: Sur les ensembles clairsemés.Dissertationes Math. 19 (1959). Zbl 0137.16002, MR 0107849 |
Reference:
|
[T68] Telgarsky R.: Total paracompactness and paracompact dispersed spaces.Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 16 (1968), 567-572. Zbl 0164.53101, MR 0235517 |
Reference:
|
[T71] Telgarsky R.: $C$-scattered and paracompact spaces.Fund. Math. 73 (1971), 59-74. Zbl 0226.54018, MR 0295293 |
Reference:
|
[T77] Telgarsky R.: Review of KR77, MR0474180 (57 #13830).. |
. |