Previous |  Up |  Next

Article

Keywords:
Bol loop; Bruck loop; simple loop
Summary:
In this paper we make some remarks on simple Bol loops which were motivated by questions at the LOOPS'07 conference. We also list some open problems on simple loops.
References:
[1] Aschbacher M.: On Bol loops of exponent $2$. J. Algebra 288 1 99-136 (2005). DOI 10.1016/j.jalgebra.2005.03.005 | MR 2138373 | Zbl 1090.20037
[2] Aschbacher M.: Projective planes, loops, and groups. J. Algebra 300 2 396-432 (2006). DOI 10.1016/j.jalgebra.2005.01.058 | MR 2228204 | Zbl 1103.20063
[3] Aschbacher M., Kinyon M.K., Phillips J.D.: Finite Bruck loops. Trans. Amer. Math. Soc. 358 7 3061-3075 (2005). DOI 10.1090/S0002-9947-05-03778-5 | MR 2216258
[4] Baer R.: Nets and groups. Trans. Amer. Math. Soc. 46 110-141 (1939). MR 0000035 | Zbl 0022.01105
[5] Bruck R.H.: A Survey of Binary Systems. Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[6] Cameron P.J., Korchmáros G.: One-factorizations of complete graphs with a doubly transitive automorphism group. Bull. London Math. Soc. 25 1 (1993), 1-6. DOI 10.1112/blms/25.1.1 | MR 1190356
[7] Fischer B.: Distributive Quasigruppen endlicher Ordnung. Math. Z. 83 267-303 (1964). DOI 10.1007/BF01111162 | MR 0160845 | Zbl 0119.26201
[8] Glauberman G.: On loops of odd order. J. Algebra 1 374-396 (1964). DOI 10.1016/0021-8693(64)90017-1 | MR 0175991 | Zbl 0123.01502
[9] Grishkov A.N., Zavarnitsine A.V.: Lagrange's theorem for Moufang loops. Math. Proc. Cambridge Philos. Soc. 139 (2005), 1 41-57. DOI 10.1017/S0305004105008388 | MR 2155504 | Zbl 1091.20039
[10] Hall J.I.: Central automorphisms of Latin square designs and loops. Quasigroups and Related Systems 15 19-46 (2007). MR 2379124
[11] Hofmann K.H., Strambach K.: Topological and analytic loops. Quasigroups and Loops: Theory and Applications, pp.205-262, Sigma Ser. Pure Math. 8, Heldermann, Berlin, 1990. MR 1125815 | Zbl 0747.22004
[12] Kiechle H.: Theory of K-loops. Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. DOI 10.1007/b83276 | MR 1899153 | Zbl 0997.20059
[13] Kiechle H., Kinyon M.K.: Infinite simple Bol loops. Comment. Math. Univ. Carolin. 45 2 275-278 (2004). MR 2075275 | Zbl 1101.20038
[14] Kinyon M.K.: LoopForum communication. 2007.
[15] Liebeck M.W.: The classification of finite simple Moufang loops. Math. Proc. Cambridge Philos. Soc. 102 33-47 (1987). DOI 10.1017/S0305004100067025 | MR 0886433 | Zbl 0622.20061
[16] Loginov E.K.: Simple Bol loops. Comm. Algebra 35 1 133-144 (2007). DOI 10.1080/00927870601041425 | MR 2287556 | Zbl 1136.20054
[17] Nagy G.P.: Burnside problems for Moufang and Bol loops of small exponent. Acta Sci. Math. (Szeged) 67 3-4 687-696 (2001). MR 1876459 | Zbl 0995.20049
[18] Nagy G.P.: A class of simple proper Bol loops. submitted for publication; download from http://arxiv.org/abs/math.GR/0703919 MR 2429915 | Zbl 1167.20038
[19] Nagy G.P.: A class of finite simple Bol loops of exponent $2$. Trans. Am. Math. Soc., to appear; download from http://arxiv.org/abs/0709.4544v1 MR 2515813
[20] Nagy P.T., Strambach K.: Loops in Group Theory and Lie Theory. Walter de Gruyter, Berlin, New York, 2002. MR 1899331 | Zbl 1050.22001
[21] Robinson D.A.: Some open questions on Bol loops, mimeographed notes. Oberwolfach Conference on Bol and Moufang Loops, 1976.
[22] Thompson J.: Finite groups with fixed-point-free automorphisms of prime order. Proc. Nat. Acad. Sci. U.S.A. 45 578-581 (1959). DOI 10.1073/pnas.45.4.578 | MR 0104731 | Zbl 0086.25101
Partner of
EuDML logo