Previous |  Up |  Next

Article

Title: A class of commutative loops with metacyclic inner mapping groups (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 3
Year: 2008
Pages: 357-382
.
Category: math
.
Summary: We investigate loops defined upon the product $\Bbb Z_m\times \Bbb Z_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \Bbb Z_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail. (English)
Keyword: A-loop
Keyword: nucleus
Keyword: inner mapping group
Keyword: cocycle
Keyword: linear fractional
MSC: 08A05
MSC: 20N05
idZBL: Zbl 1192.20053
idMR: MR2490433
.
Date available: 2009-05-05T17:11:49Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119729
.
Reference: [1] Belousov V.D.: Proizvodnyje operacii i asociatory v lupach.Mat. Sb. 45 (1958), 51-70. MR 0093556
Reference: [2] Belousov V.D.: Osnovy teorii kvazigrupp i lup.Nauka, Moskva, 1967. MR 0218483
Reference: [3] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms.Ann. of Math. 63 (1956), 308-323. Zbl 0074.01701, MR 0076779, 10.2307/1969612
Reference: [4] Csörgö P., Niemenmaa M.: Solvability conditions for loops and groups.J. Algebra 232 (2000), 336-342. MR 1783930, 10.1006/jabr.2000.8408
Reference: [5] Csörgö P., Niemenmaa M.: On connected transversals to nonabelian subgroups.European J. Combin. 23 (2002), 179-185. Zbl 0997.20031, MR 1881549, 10.1006/eujc.2001.0544
Reference: [6] Drápal A.: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191-206. Zbl 1005.20051, MR 1883500, 10.1007/s605-002-8256-2
Reference: [7] Drápal A.: Structural interactions of conjugacy closed loops.Trans. Amer. Math. Soc. 360 (2008), 671-689. Zbl 1144.20043, MR 2346467, 10.1090/S0002-9947-07-04131-1
Reference: [8] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification.submitted.
Reference: [9] Drápal A.: A nuclear construction of loops with small inner mapping groups.Abh. Math. Sem. Univ. Hamburg 77 (2007), 201-218. Zbl 1145.20037, MR 2379339, 10.1007/BF03173499
Reference: [10] Kinyon M.K., Kunen K., Phillips J.D.: Every diassociative $A$-loop is Moufang.Proc. Amer. Math. Soc. 130 (2002), 619-624. Zbl 0990.20044, MR 1866009, 10.1090/S0002-9939-01-06090-7
Reference: [11] Myllylä K., Niemenmaa M.: On the solvability of commutative loops and their multiplication groups.Comment. Math. Univ. Carolin. 40 (1999), 209-213. MR 1732641
Reference: [12] Niemenmaa M.: On finite loops whose inner mapping groups have small orders.Comment. Math. Univ. Carolin. 37 (1996), 651-654. Zbl 0881.20006, MR 1426930
Reference: [13] Niemenmaa M.: On connected transversals to subgroups whose order is a product of two primes.European J. Combin. 18 (1997), 915-919. Zbl 0889.20044, MR 1485376, 10.1006/eujc.1997.0163
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-3_1.pdf 331.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo