Title:
|
A class of commutative loops with metacyclic inner mapping groups (English) |
Author:
|
Drápal, Aleš |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
49 |
Issue:
|
3 |
Year:
|
2008 |
Pages:
|
357-382 |
. |
Category:
|
math |
. |
Summary:
|
We investigate loops defined upon the product $\Bbb Z_m\times \Bbb Z_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \Bbb Z_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail. (English) |
Keyword:
|
A-loop |
Keyword:
|
nucleus |
Keyword:
|
inner mapping group |
Keyword:
|
cocycle |
Keyword:
|
linear fractional |
MSC:
|
08A05 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1192.20053 |
idMR:
|
MR2490433 |
. |
Date available:
|
2009-05-05T17:11:49Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119729 |
. |
Reference:
|
[1] Belousov V.D.: Proizvodnyje operacii i asociatory v lupach.Mat. Sb. 45 (1958), 51-70. MR 0093556 |
Reference:
|
[2] Belousov V.D.: Osnovy teorii kvazigrupp i lup.Nauka, Moskva, 1967. MR 0218483 |
Reference:
|
[3] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms.Ann. of Math. 63 (1956), 308-323. Zbl 0074.01701, MR 0076779, 10.2307/1969612 |
Reference:
|
[4] Csörgö P., Niemenmaa M.: Solvability conditions for loops and groups.J. Algebra 232 (2000), 336-342. MR 1783930, 10.1006/jabr.2000.8408 |
Reference:
|
[5] Csörgö P., Niemenmaa M.: On connected transversals to nonabelian subgroups.European J. Combin. 23 (2002), 179-185. Zbl 0997.20031, MR 1881549, 10.1006/eujc.2001.0544 |
Reference:
|
[6] Drápal A.: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191-206. Zbl 1005.20051, MR 1883500, 10.1007/s605-002-8256-2 |
Reference:
|
[7] Drápal A.: Structural interactions of conjugacy closed loops.Trans. Amer. Math. Soc. 360 (2008), 671-689. Zbl 1144.20043, MR 2346467, 10.1090/S0002-9947-07-04131-1 |
Reference:
|
[8] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification.submitted. |
Reference:
|
[9] Drápal A.: A nuclear construction of loops with small inner mapping groups.Abh. Math. Sem. Univ. Hamburg 77 (2007), 201-218. Zbl 1145.20037, MR 2379339, 10.1007/BF03173499 |
Reference:
|
[10] Kinyon M.K., Kunen K., Phillips J.D.: Every diassociative $A$-loop is Moufang.Proc. Amer. Math. Soc. 130 (2002), 619-624. Zbl 0990.20044, MR 1866009, 10.1090/S0002-9939-01-06090-7 |
Reference:
|
[11] Myllylä K., Niemenmaa M.: On the solvability of commutative loops and their multiplication groups.Comment. Math. Univ. Carolin. 40 (1999), 209-213. MR 1732641 |
Reference:
|
[12] Niemenmaa M.: On finite loops whose inner mapping groups have small orders.Comment. Math. Univ. Carolin. 37 (1996), 651-654. Zbl 0881.20006, MR 1426930 |
Reference:
|
[13] Niemenmaa M.: On connected transversals to subgroups whose order is a product of two primes.European J. Combin. 18 (1997), 915-919. Zbl 0889.20044, MR 1485376, 10.1006/eujc.1997.0163 |
. |