Previous |  Up |  Next

Article

Title: A note on perfect matchings in uniform hypergraphs with large minimum collective degree (English)
Author: Rödl, Vojtěch
Author: Ruciński, Andrzej
Author: Schacht, Mathias
Author: Szemerédi, Endre
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 633-636
.
Category: math
.
Summary: For an integer $k\ge2$ and a $k$-uniform hypergraph $H$, let $\delta_{k-1}(H)$ be the largest integer $d$ such that every $(k-1)$-element set of vertices of $H$ belongs to at least $d$ edges of $H$. Further, let $t(k,n)$ be the smallest integer $t$ such that every $k$-uniform hypergraph on $n$ vertices and with $\delta_{k-1}(H)\ge t$ contains a perfect matching. The parameter $t(k,n)$ has been completely determined for all $k$ and large $n$ divisible by $k$ by Rödl, Ruci'nski, and Szemerédi in [{\it Perfect matchings in large uniform hypergraphs with large minimum collective degree\/}, submitted]. The values of $t(k,n)$ are very close to $n/2-k$. In fact, the function $t(k,n)=n/2-k+c_{n,k}$, where $c_{n,k}\in\{3/2, 2, 5/2, 3\}$ depends on the parity of $k$ and $n$. The aim of this short note is to present a simple proof of an only slightly weaker bound: $t(k,n)\le n/2+k/4$. Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Spr"ussel. (English)
Keyword: hypergraph
Keyword: perfect matching
MSC: 05C65
MSC: 05C70
idZBL: Zbl 1212.05215
idMR: MR2493942
.
Date available: 2009-05-05T17:13:31Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119750
.
Reference: [1] Aharoni R., Georgakopoulos A., Sprüssel Ph.: Perfect matchings in $r$-partite $r$-graphs.submitted.
Reference: [2] Kühn D., Osthus D.: Matchings in hypergraphs of large minimum degree.J. Graph Theory 51 (2006), 4 269-280. Zbl 1087.05041, MR 2207573, 10.1002/jgt.20139
Reference: [3] Rödl V., Ruciński A., Szemerédi E.: An approximative Dirac-type theorem for $k$-uniform hypergraphs.Combinatorica, to appear. MR 2399020
Reference: [4] Rödl V., Ruciński A., Szemerédi E.: Perfect matchings in large uniform hypergraphs with large minimum collective degree.submitted.
Reference: [5] Rödl V., Ruciński A., Szemerédi E.: Perfect matchings in uniform hypergraphs with large minimum degree.European J. Combin. 27 (2006), 8 1333-1349. Zbl 1104.05051, MR 2260124, 10.1016/j.ejc.2006.05.008
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_8.pdf 177.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo