Previous |  Up |  Next

Article

Title: A generalization of normal spaces (English)
Author: Renukadevi, V.
Author: Sivaraj, D.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 4
Year: 2008
Pages: 265-270
Summary lang: English
.
Category: math
.
Summary: A new class of spaces which contains the class of all normal spaces is defined and its characterization and properties are discussed. (English)
Keyword: $\mathcal{I}$-regular
Keyword: codense ideal
Keyword: $\mathcal{I}$-compact
Keyword: $\mathcal{I}$-paracompact
MSC: 54C10
MSC: 54D15
idZBL: Zbl 1212.54073
idMR: MR2493423
.
Date available: 2009-01-29T09:15:19Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/119766
.
Reference: [1] Hamlett, T. R., Jancović, D.: Compactness with respect to an ideal.Boll. Un. Mat. Ital. B (7) 4 (1990), 849–861. MR 1086708
Reference: [2] Hamlett, T. R., Jancović, D.: On weaker forms of paracompactness, countable compactness and Lindelofness.Ann. New York Acad. Sci. 728 (1994), 41–49. MR 1467761, 10.1111/j.1749-6632.1994.tb44132.x
Reference: [3] Jancović, D., Hamlett, T. R.: New Topologies from old via ideals.Amer. Math. Monthly 97 (4) (1990), 295 – 310. MR 1048441, 10.2307/2324512
Reference: [4] Kuratowski, K.: Topology, Vol. I.Academic Press, New York, 1966. Zbl 0158.40901, MR 0217751
Reference: [5] Newcomb, R. L.: Topologies which are compact modulo an ideal.Ph.D. thesis, University of Cal. at Santa Barbara, 1967.
Reference: [6] Renukadevi, V., Sivaraj, D., Tamizh Chelvam, T.: Codense and Completely codense ideals.Acta Math. Hungar. 108 (3) (2005), 197–205. MR 2162560
Reference: [7] Steen, L. A., Seebach, J. A.: Counterexamples in Topology.Springer-Verlag, New York, 1978. Zbl 0386.54001, MR 0507446
Reference: [8] Vaidyanathaswamy, R.: The localization theory in set topology.Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51–61. MR 0010961
Reference: [9] Vaidyanathaswamy, R.: Set Topology.Chelsea Publishing Company, 1946. MR 0115151
Reference: [10] Zahid, M. I.: Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies.Ph.D. thesis, Univ. of Pittsburgh, 1981.
.

Files

Files Size Format View
ArchMathRetro_044-2008-4_2.pdf 400.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo