Title:
|
Lattice-valued Borel measures. III. (English) |
Author:
|
Khurana, Surjit Singh |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
307-316 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$ $(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures. (English) |
Keyword:
|
order convergence |
Keyword:
|
tight and $\tau $-smooth lattice-valued vector measures |
Keyword:
|
measure representation of positive linear operators |
Keyword:
|
Alexandrov’s theorem |
MSC:
|
28A33 |
MSC:
|
28B15 |
MSC:
|
28C05 |
MSC:
|
28C15 |
MSC:
|
46B42 |
MSC:
|
46G10 |
idZBL:
|
Zbl 1212.28009 |
idMR:
|
MR2493427 |
. |
Date available:
|
2009-01-29T09:15:33Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119770 |
. |
Reference:
|
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Academic Press, 1985. Zbl 0608.47039, MR 0809372 |
Reference:
|
[2] Diestel, J., Uhl, J. J.: Vector measures.Math. Surveys 15 (1977), 322. Zbl 0369.46039, MR 0453964 |
Reference:
|
[3] Kaplan, S.: The second dual of the space of continuous function.Trans. Amer. Math. Soc. 86 (1957), 70–90. MR 0090774, 10.1090/S0002-9947-1957-0090774-3 |
Reference:
|
[4] Kaplan, S.: The second dual of the space of continuous functions IV.Trans. Amer. Math. Soc. 113 (1964), 517–546. Zbl 0126.12002, MR 0170205, 10.1090/S0002-9947-1964-0170205-9 |
Reference:
|
[5] Kawabe, J.: The Portmanteau theorem for Dedekind complete Riesz space-valued measures.Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. Zbl 1076.28004, MR 2144038 |
Reference:
|
[6] Kawabe, J.: Uniformity for weak order convergence of Riesz space-valued measures.Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. MR 2133410, 10.1017/S0004972700038235 |
Reference:
|
[7] Khurana, Surjit Singh: Lattice-valued Borel Measures.Rocky Mountain J. Math. 6 (1976), 377–382. MR 0399409, 10.1216/RMJ-1976-6-2-377 |
Reference:
|
[8] Khurana, Surjit Singh: Lattice-valued Borel Measures II.Trans. Amer. Math. Soc. 235 (1978), 205–211. Zbl 0325.28012, MR 0460590, 10.1090/S0002-9947-1978-0460590-2 |
Reference:
|
[9] Khurana, Surjit Singh: Vector measures on topological spaces.Georgian Math. J. 14 (2007), 687–698. Zbl 1154.46025, MR 2389030 |
Reference:
|
[10] Kluvanek, I., Knowles, G.: Vector measures and Control Systems.North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. MR 0499068 |
Reference:
|
[11] Lewis, D. R.: Integration with respect to vector measures.Pacific J. Math. 33 (1970), 157–165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157 |
Reference:
|
[12] Lipecki, Z.: Riesz representation representation theorems for positive operators.Math. Nachr. 131 (1987), 351–356. MR 0908823, 10.1002/mana.19871310130 |
Reference:
|
[13] Meyer-Nieberg, P.: Banach Lattices and positive operators.Springer-Verlag, 1991. MR 1128093 |
Reference:
|
[14] Schaefer, H. H.: Banach Lattices and Positive Operators.Springer-Verlag, 1974. Zbl 0296.47023, MR 0423039 |
Reference:
|
[15] Schaefer, H. H.: Topological Vector Spaces.Springer-Verlag, 1986. MR 0342978 |
Reference:
|
[16] Schaefer, H. H., Zhang, Xaio-Dong: A note on order-bounded vector measures.Arch. Math. (Basel) 63 (2) (1994), 152–157. MR 1289297, 10.1007/BF01189889 |
Reference:
|
[17] Schmidt, K. D.: On the Jordan decomposition for vector measures. Probability in Banach spaces, IV.(Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. MR 0707518 |
Reference:
|
[18] Schmidt, K. D.: Decompositions of vector measures in Riesz spaces and Banach lattices.Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. Zbl 0569.28011, MR 0829177 |
Reference:
|
[19] Varadarajan, V. S.: Measures on topological spaces.Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220. |
Reference:
|
[20] Wheeler, R. F.: Survey of Baire measures and strict topologies.Exposition. Math. 2 (1983), 97–190. Zbl 0522.28009, MR 0710569 |
Reference:
|
[21] Wright, J. D. M.: Stone-algebra-valued measures and integrals.Proc. London Math. Soc. (3) 19 (1969), 107–122. Zbl 0186.46504, MR 0240276 |
Reference:
|
[22] Wright, J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. Zbl 0215.48101, MR 0330411, 10.5802/aif.393 |
Reference:
|
[23] Wright, J. D. M.: Vector lattice measures on locally compact spaces.Math. Z. 120 (1971), 193–203. Zbl 0198.47803, MR 0293373, 10.1007/BF01117493 |
Reference:
|
[24] Wright, J. D. M.: Measures with values in partially ordered vector spaces.Proc. London Math. Soc. 25 (1972), 675–688. MR 0344413 |
Reference:
|
[25] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property.J. London Math. Soc. 7 (1973), 277–285. MR 0333116, 10.1112/jlms/s2-7.2.277 |
. |