Previous |  Up |  Next

Article

Title: Über die Existenz einer begrenzten und periodischen Lösung der nichtlinealisierten Jacobischen Gleichung mit negativ definitivem Träger (German)
Title: On the existence of a bounded and periodic solution of the nonlinearized Jacobi equation with negative definite support (English)
Title: O existenci ohraničeného a periodického řešení nelinearizované Jacobiho rovnice s negativně definitním nosičem (Czech)
Author: Andres, Ján
Author: Palát, Jindřich
Language: German
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 26
Issue: 1
Year: 1987
Pages: 85-93
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 34C11
MSC: 34C25
MSC: 37-99
idZBL: Zbl 0706.34031
idMR: MR1033332
.
Date available: 2009-01-29T15:32:39Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120186
.
Reference: [1] Cesari L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations.Springer, Berlin-Heidelberg-New York, 1971. Zbl 0215.13802, MR 0350089
Reference: [2] Yamamoto M., Sakata S.: On the boundedness of solutions and the attractivity properties for nonlinear second-order differential equations.Mat. Japonica 27, 2 (1982) 231-251. Zbl 0503.34024, MR 0655227
Reference: [3] Massera J. L.: The existence of periodic solutions of systems of differential equations.Duke Math. J. 17 (1950), 83-97. Zbl 0038.25002, MR 0040512
Reference: [4] Ráb M.: Bounds for solutions of the equations $[p(t)x']' + q(t)x = h(t,x,x')$.Arch. Math. 2, 11 (1975), 79-84. MR 0412520
Reference: [5] Andres J.: A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties.Acta UPO 25, 85 (1986), 157-164. Zbl 0641.34036, MR 0918373
Reference: [6] Hille E.: On the Landau-Kallman-Rota inequality.J. Approx. Theory 6 (1972), 117-122. Zbl 0238.47007, MR 0343095
.

Files

Files Size Format View
ActaOlom_26-1987-1_6.pdf 805.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo