Previous |  Up |  Next

Article

Title: Method of lower and upper solutions for a third-order three-point regular boundary value problem (English)
Author: Šenkyřík, Martin
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 31
Issue: 1
Year: 1992
Pages: 60-70
.
Category: math
.
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0769.34021
idMR: MR1212606
.
Date available: 2009-01-29T15:38:49Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120281
.
Reference: [1] R.P. Agarwal: On boundary value problems y'''=f(x,y,y',y'').Bull. of the Institute of Math. Sinica, 12 (1984), 153-157. MR 0765109
Reference: [2] D. Barr, T. Sherman: Existence and uniqueness of solutions of three-point boundary value problems.J. Diff. Eqs.13 (1973), 197-212. Zbl 0261.34014, MR 0333326
Reference: [3] J. Bebernes: A sub-function aproach to boundary value problems for nonlinear ordinary differential equations.Pacif. J. Math. 13 (1963), 1063-1066.
Reference: [4] G. Carristi: A three-point boundary value problem for a third order differential equation.Boll. Unione Mat. Ital., C4, 1 (1985), 259-269. MR 0805218
Reference: [5] K.M. Das, B.S. Lalli: Boundary value problems for y'' '=f(x,y,y',y'').J. Math. Anal. Appl, 81 (1981), 300-307. Zbl 0465.34012, MR 0622819
Reference: [6] R.E. Gaines J.L. Mawhin: Coincidence Degree and Nonlinear Differential Equations.Berlin-Heidelberg-New-York, Springer-Verlag, 1977, 262 p. MR 0637067
Reference: [7] C.P. Gupta: On a third-order three-point boundary value problem at resonance.Diff. Int. Equations, Vol 2, 1 (1989), 1-12. Zbl 0722.34014, MR 0960009
Reference: [8] G.H. Hardy J.E. Littlewood, G. Polya: Inequalities.(Russian trans.), IL, Moscow, 1970.
Reference: [9] P. Hartman: Ordinary Differential Equations.(Russian trans.), Mir, Moscow, 1970, 720 p. Zbl 0214.09101, MR 0352574
Reference: [10] P. Hartman: On n-parameter families and interpolation problems for nonlinear ordinary differential equations.Trans. Amer. Math. Soc. 154 (1971), 201-266. Zbl 0222.34017, MR 0301277
Reference: [11] J. Henderson, L. Jackson: Existence and uniqueness of solutions of k-point boundary value problems for ordinary differential equations.J. Diff. Eqs. 48 (1970), 373-385. MR 0702426
Reference: [12] I.T. Kiguradze: On a singular problem of Cauchy-Nicoletti.Ann. Mat. Pura ed Appl., 104 (1975), 151-175. Zbl 0307.34003, MR 0402157
Reference: [13] I.T. Kiguradze: Some Singular Boundary Value Problems for Ordinary Differential Equations.(Russian), Univ. Press Tbilisi, 1975. MR 0499402
Reference: [14] I.T. Kiguradze: Boundary problems for systems of ordinary differential equations.(Russian), Itogi nauki i tech., Sovr. pr. mat., 30, Moscow 1987.
Reference: [15] G. Klaasen: Existence theorems for boundary value problems for n-th order differential equations.Rocky Mtn. J. Math., 3 (1973), 457-472. MR 0357944
Reference: [16] E. Lepina, A. Lepin: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third-order differential equation.(Russian), Latv. Mat. Ežeg. 8 (1970), 149-154.
Reference: [17] I. Rachůnková: On some three-point problems for third-order differential equations.Mathematica Bohemica 117 (1992), 98-110. MR 1154059
Reference: [18] M. Šenkyřík: On a third-order three-point regular boundary value problem.Acta UPO, Fac.rer.nat., Mathematica XXX, 1991. MR 1166427
Reference: [19] N.I. Vasiljev, J.A. Klokov: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations.(Russian), Zinatne, Riga 1978.
.

Files

Files Size Format View
ActaOlom_31-1992-1_7.pdf 1.023Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo