Title:
|
Polynomial mappings of polynomial structures with simple roots (English) |
Author:
|
Vanžura, Jiří |
Author:
|
Vanžurová, Alena |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
33 |
Issue:
|
1 |
Year:
|
1994 |
Pages:
|
157-164 |
. |
Category:
|
math |
. |
MSC:
|
53C05 |
MSC:
|
53C15 |
idZBL:
|
Zbl 0854.53024 |
idMR:
|
MR1385756 |
. |
Date available:
|
2009-01-29T15:47:35Z |
Last updated:
|
2012-05-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120309 |
. |
Reference:
|
[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds.Coll. Math. Soc. J. Bolyai, 31 Diff. Geom., Budapest 1979, 119-124. |
Reference:
|
[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure.Czech. Math. Jour., 32 (107), 1982, 556-581. MR 0682132 |
Reference:
|
[3] Goldberg S. I., Yano K.: Polynomial structures on manifolds.Ködai Math. Sem. Rep. 22, 1970, 199-218. Zbl 0194.52702, MR 0267478 |
Reference:
|
[4] Ishihara S.: Normal structure $f$ satisfying $f^3 + f = 0$.Ködai Math. Sem. Rep. 18, 1966, 36-47. MR 0210023 |
Reference:
|
[5] Kubát V.: Simultaneous integrability of two J-related almost tangent structures.CMUC (Praha) 20, 3, 1979, 461-473. Zbl 0436.53032, MR 0550448 |
Reference:
|
[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent.Ann. Inst. Fourier 16, 2, Grenoble 1966, 329-387. Zbl 0145.42103, MR 0212720 |
Reference:
|
[7] Opozda B.: Almost product and almost complex structures generated by polynomial structures.Acta Math. Jagellon. Univ. XXIV, 1984, 27-31. Zbl 0582.53032, MR 0815882 |
Reference:
|
[8] Vanžura J.: Integrability conditions for polynomial structures.Ködai Math. Sem. Rep. 27, 1976, 42-50 MR 0400106 |
Reference:
|
[9] Vanžurová A.: Polynomial structures on manifolds.Ph.D. thesis, 1974. |
Reference:
|
[10] Vanžurová A.: On polynomial structures and their G-structures.(to appear). |
Reference:
|
[11] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$.99-109. MR 0159296 |
. |