Previous |  Up |  Next

Article

Title: On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources (English)
Author: Horák, Jiří V.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 34
Issue: 1
Year: 1995
Pages: 39-58
.
Category: math
.
MSC: 35D05
MSC: 35Q72
MSC: 73B30
MSC: 73C15
MSC: 74K10
MSC: 74K20
idZBL: Zbl 0854.35019
idMR: MR1447253
.
Date available: 2009-01-29T15:47:54Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120331
.
Reference: [1] Boley B. A., Weiner J. H.: Theory of Thermal Stresses.J. Wiley and sons, New York, 1960 Zbl 1234.74001, MR 0112414
Reference: [2] Dafermos C. M.: On the Existence and the Asymptotic Stability of Solution to the Equations of Linear Thermoelasticity.Arch. Rational Mech. Anal., 29 (1968), 241-271. MR 0233539
Reference: [3] Washizu K.: Variational Methods in Elasticity and Plasticity.Pergamon Press, Oxford, 1968. Zbl 0164.26001, MR 0391679
Reference: [4] Kovalenko A. D.: Fundamentals of thermoelasticity.Izdatelstvo "Naukova dumka", Kiev, 1970 (in Russian).
Reference: [5] Nowacki W.: Dynamical problems of thermoelasticity.Izdatelstvo "Mir", Moskva, 1970 (in Russian).
Reference: [6] Aubin J. P.: Approximation of Elliptic Boundary - Value Problems.Wiley-Interscience, London, 1972. Zbl 0248.65063, MR 0478662
Reference: [7] Carlson D. E.: Linear Thermoelasticity.Encyklopedia of Physics, ed. S. Flüge, Volume VIa/2, Mechanics of Solids II. Springer Verlag, Berlin, 1972.
Reference: [8] Lions J. L.: Někatoryje metody rešenija nelinejnych krajevych zadač.Izdatelstvo "Mir", Moskva, 1972 (in Russian).
Reference: [9] Adams R. A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [10] Michlin S. G.: Variational methods in mathematical physics.Alfa, Bratislava, 1975 (in Slovak).
Reference: [11] Truesdell C.: A first course in rational mechanics.Izdatelstvo "Mir", Moskva 1975 (in Russian).
Reference: [12] Glowinski R., Lions J. L. , Trémolieres R.: Analyse numérique des inéquations variationnelles.Dunod, Paris, 1976.
Reference: [13] Kufner A., John O., Fučík S.: Function Spaces.Academia, Praha, 1977. MR 0482102
Reference: [14] Michlin S. G.: Linějnyje uravněnija v častnych proizvodnych.Moskva, Vyššaja škola, 1977 (in Russian).
Reference: [15] Nowacki W.: Coupled fields in mechanics of solids.In: W. T. Koiter: Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, 1976, North-Holland, Amsterdam, 1977. MR 0429437
Reference: [16] Nowinski J. L.: Theory of thermoelasticity with applications.Sijthoff & Noordhoff international Publishers, Aplhen Aan den Tijn, 1978. Zbl 0379.73004, MR 0512892
Reference: [17] Aubin J. P.: Applied Functional Analysis.J. Wiley and sons, New York, 1979. Zbl 0424.46001, MR 0549483
Reference: [18] Day W. A.: Justification of the Uncoupled and Quasistatic Approximation in a Problem of Dynamic Thermoelasticity.Arch. Rational Mech. Anal. 77 (1981), 387-396. MR 0642554
Reference: [19] Day W. A.: Further Justification of the Uncoupled and Quasi-Static Approximations in Thermoelasticity.Arch. Rational Mech. Anal. 79 (1982), 85-95. Zbl 0507.73003, MR 0654916
Reference: [20] Bock I., Lovíšek J., Štangl J.: Contact problem for two elastic beams.(in slovak), Strojnický časopis 35 (1984), No 3, 353-373 (in Slovak).
Reference: [21] Ženíšek A.: The existence and uniqueness theorem in Biot’s consolidation theory.Aplikace matematiky, 29 (1984), No 3, 194-211. Zbl 0557.35005, MR 0747212
Reference: [22] Ženíšek A.: Finite element methods for coupled thermoelasticity and coupled consolidation of clay.R. A. I. R. O. Numer. Anal. 18 (1984), 183-205. MR 0743885
Reference: [23] Day W. A.: Heat Conduction Within Linear Thermoelasticity.Springer-Verlag, New York, 1985. Zbl 0577.73009, MR 0804043
Reference: [24] Horák J.: Evolution variational inequalities in thermoelasticity.MÚ ČSAV, Praha, 1985 (in Czech).
Reference: [25] Horák J.: Solution of the problem in linear theory of coupled thermoelasticity.Ph. D. Thesis, Faculty of Natural Sciences, UP Olomouc, 1993 (in Czech).
Reference: [26] Kačur J.: Method of Rothe in Evolution Equations.Taubner - Texte zur Mathematik, Band 80, Liepzig, 1985. MR 0834176
Reference: [27] Rektorys K.: Method of dicretization in time and partial differential equations.TKI, SNTL, Praha, 1985 (in Czech).
Reference: [28] Kačur J., Ženíšek A.: Analysis of approximate solution of coupled dynamical thermoelasticity and related problems.Aplikace matematiky 31 (1986), No 3, 190-223. MR 0837733
Reference: [29] Tauchert T. R.: Thermal Stresses in Plates - Dynamical Problems, chapter 1.In: Richard B. Hetnarski, ed.: Thermal Stresses, vol II., North-Holland, Amsterdam, 1986.
.

Files

Files Size Format View
ActaOlom_34-1995-1_5.pdf 2.521Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo