Previous |  Up |  Next

Article

Title: Some remarks on polynomial structures (English)
Author: Vanžurová, Alena
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 35
Issue: 1
Year: 1996
Pages: 177-188
.
Category: math
.
MSC: 53C15
idZBL: Zbl 0974.53021
idMR: MR1485055
.
Date available: 2009-01-29T15:49:52Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120345
.
Reference: [1] Bejancu A.: Geometry of CR-submanifolds.D. Reidel, Dordrecht, 1986. Zbl 0605.53001, MR 0861408
Reference: [2] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds.Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124.
Reference: [3] Goldberg S. I., Petridis N. C.: Differentiable solutions of algebraic equations on manifolds.Ködai Math. Sem. Rep. 25 (1973), 111-128. Zbl 0253.53034, MR 0315627
Reference: [4] Goldberg S. I., Yano K.: Polynomial structures on manifolds.Ködai Math. Sem. Rep. 22 (1970), 199-218. Zbl 0194.52702, MR 0267478
Reference: [5] Ishihara S.: Normal structure f satisfying f3 + f = 0.Ködai Math. Sem. Rep. 18 1966, 36-47. MR 0210023
Reference: [6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent.Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. Zbl 0145.42103, MR 0212720
Reference: [7] Lehmann-Lejeune J.: Sur l’intégrabilité de certaines G-structures.C. R. Acad. Sci Paris 258 1984, 32-35. MR 0162200
Reference: [8] Mizner R. I.: CR structures of codimension 2.J. Differ. Geom. 30 (1989), 167-190. Zbl 0675.32017, MR 1001274
Reference: [9] Mizner R. I.: Almost CR structures, f-structures, almost product structures and associated connections.Rocky Mountain J. of Math. 23 (1993), 1337-1359. Zbl 0806.53030, MR 1256452
Reference: [10] Newlander A., Nierenberg L.: Complex analytic coordinates in almost complex manifolds.Ann. Math. 65 (1957), 391-404. MR 0088770
Reference: [11] Opozda B.: Almost product and almost complex structures generated by polynomial structures.Acta Math. Jagellon. Univ. 24 (1984), 27-31. Zbl 0582.53032, MR 0815882
Reference: [12] Shandra I. V.: On an isotranslated $n\pi$- structure and connections preserving a nonholonomic $(n+1)$-coweb.Webs and Quasigroups, 1994, Tver (Russia), 60-66. MR 1413340
Reference: [13] Vanžura J.: Integrability conditions for polynomial structures.Ködai Math. Sem. Rep. 27 1976, 42-60. MR 0400106
Reference: [14] Vanžura J., Vanžurová A.: Polynomial mappings of polynomial structures.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114 (1994), 157-164. Zbl 0854.53024, MR 1385756
Reference: [15] Vanžurová A.: Parallelisability conditions for differentiable three-webs.Arch. Math. (Brno) 32, 1 (1995), 74-84. Zbl 0835.53019, MR 1342378
Reference: [16] Walczak P. G.: Polynomial structures on principal fibre bundles.Coll. Math. 35 (1976), 73-81. Zbl 0324.53030, MR 0402646
Reference: [17] Walker A. G.: Almost-product structures.In: Differential geometry, Proc. of Symp. in Pure Math. 3 (1961), 94-100. Zbl 0103.38801, MR 0123993
Reference: [18] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying f3 -f = 0.Tensor, 1963, 99-109. MR 0159296
Reference: [19] Yano K., Kon M.: CR submanifolds of Kaehlerian and Sasakian manifolds.Birkhäuser, Boston, 1983. Zbl 0496.53037, MR 0688816
Reference: [20] Yano K., Kon M.: Structures on manifolds.World Scientific, Singapore, 1984. Zbl 0557.53001, MR 0794310
Reference: [21] Lang S.: Algebra.New York, 1965. Zbl 0193.34701
Reference: [22] Gantmacher F. R.: Teorija matric.Moskva, 1966.
.

Files

Files Size Format View
ActaOlom_35-1996-1_18.pdf 1.072Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo