Previous |  Up |  Next

Article

Title: Local representations of quartic splines (English)
Author: Kobza, Jiří
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 36
Issue: 1
Year: 1997
Pages: 63-78
.
Category: math
.
MSC: 41A15
MSC: 65D05
MSC: 65D07
idZBL: Zbl 0958.41005
idMR: MR1620525
.
Date available: 2009-01-29T15:50:27Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120373
.
Reference: [1] Ahlberg J. H., Nilson E. N., Walsh J. L.: The Theory of Splines and Their Applications.Academic Press, New York, 1967. Zbl 0158.15901, MR 0239327
Reference: [2] Bojanov B. P., Hakopian H. A., Sanakian A. A.: Spline Functions and Multivariate Interpolation.Kluwer Acad. Publ., Dordrecht, 1993. MR 1244800
Reference: [3] De Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978. Zbl 0406.41003, MR 0507062
Reference: [4] Kobza J.: Spline Functions.VUP Olomouc, 1993, 224 pp. (Textbook in Czech).
Reference: [5] Kobza J.: Some algorithm for computing local parameters of quartic interpolatory splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 33, Math. 114 (1994), 63-73. Zbl 0851.41009, MR 1385747
Reference: [6] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. (1995), 75-89. Zbl 0854.41011, MR 1447257
Reference: [7] Kobza J.: Computing local parameters of biquartic interpolatory splines.J. Comp. Appl. Math 63 (1995), 229-236. Zbl 0859.65010, MR 1365563
Reference: [8] Kobza J.: Quartic interpolatory splines.Studia Univ. Babes-Bolyai, Math. (1996), to appear. MR 1644442
Reference: [9] Kobza J.: Quartic and biquartic interpolatory splines on simple grid.Acta Univ. Palacki. Olomuc., Fac. rer. nat.35, Math. (1996), 61-72. Zbl 0962.41003, MR 1485045
Reference: [10] Kobza J.: Quadratic and quartic splines in MATLAB.Folia Fac. sci. Nat. Univ. Masaryk Brunensis, Mathematica 5 (1997), 47-65. Zbl 0915.65008, MR 1630855
Reference: [11] Laurent P.J.: Approximation et optimisation.Paris, Hermann, 1972. Zbl 0238.90058, MR 0467080
Reference: [12] Schumaker L. L.: Spline Functions. Basic Theory.Wiley, 1981. Zbl 0449.41004, MR 0606200
Reference: [13] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh Verlag, 1990. Zbl 0701.41015, MR 1208909
Reference: [14] Stěčkin S. B., Subbotin J. N.: Splines in Numerical Mathematics.Nauka, Moscow, 1976 (in Russian). MR 0455278
Reference: [15] Zavjalov J. S., Kvasov B. I., Mirošničenko V. L.: Methods of Spline Functions.Nauka, Moscow, 1980 (in Russian). MR 0614595
.

Files

Files Size Format View
ActaOlom_36-1997-1_7.pdf 2.038Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo