Previous |  Up |  Next

Article

Title: Two-point functional boundary value problems without growth restrictions (English)
Author: Staněk, Svatoslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 37
Issue: 1
Year: 1998
Pages: 123-142
.
Category: math
.
MSC: 34B15
MSC: 34K10
idZBL: Zbl 0963.34061
idMR: MR1690481
.
Date available: 2009-01-29T15:55:12Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120379
.
Reference: [B] Bernstein S. N.: Sur les équations du calcul des variations.Ann. Sci. École Norm. Sup., 29 (1912), 438-448.
Reference: [BL] Bernfeld S. P., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York, 1974. Zbl 0286.34018, MR 0445048
Reference: [D] Deimling K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [GK] Gelashvili S., Kiguradzel I.T.: On Multi-point Boundary Value Problems for Systems of Functional Differential and Difference Equations.Memoirs on Differential Equations and Mathematical Physics, vol. 5, Tbilisi, 1995. MR 1415806
Reference: [GGL] Granas A., Guenther R. B., Lee J. W.: Nonlinear boundary value problems for some classes of ordinary differential equations.Rocky Mountain J. Math., 10 (1980), 35-58. Zbl 0476.34017, MR 0573860
Reference: [GM] Gaines R. E., Mawhin J. L.: Coincidence Degree and Nonlinear Differential Equations.Lectures Notes in Mathematics, No. 568, Springer-Verlag, New York, 1977. Zbl 0339.47031, MR 0637067
Reference: [Ke] Kelevedjiev P.: Existence results for two-point boundary value problems.Nonlin. Anal., 22 (1994), 217-224. MR 1258957
Reference: [Ki] Kiguradze I.T.: Boundary Value Problems for Systems of Ordinary Differential Equations.Current Problems in Mathematics. Newest Results, vol. 30, 3-103. Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Moscow 1987 (in Russian). Zbl 0782.34025, MR 0925829
Reference: [LL] Lepin A. Ya., Lepin L. A.: Boundary Value Problems for Ordinary Second Order Differential Equations.Riga "Zinatne", 1988 (in Russian).
Reference: [N] Nagumo M.: Über die Differentialgleichungen yn = f(x}y,yf).Proc. Phys. Math. Soc. Japan, 19 (1937), 861-866.
Reference: [RS1] Rachůnková I., Staněk S.: Topological degree method in functional boundary value problems.Nonlin. Anal., 27 (1996), 153-165. MR 1389475
Reference: [RS2] Rachůnková I., Staněk S.: Topological degree method in functional boundary value problems at resonance.Nonlin. Anal., 27 (1996), 271-285. MR 1391437
Reference: [RT] Rodrigies A., Tineo A.: Existence theorems for the Dirichlet problem without growth restrictions.J. Math. Anal. Appl., 135 (1988), 1-7. MR 0960802
Reference: [S1] Staněk S.: Functional boundary value problems without growth restrictions.Preprint. MR 1739621
Reference: [S2] Staněk S.: Existence results for functional boundary value problems at resonance.Math. Slovaca, (in press). MR 1635235
Reference: [T1] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions.Pacific. J. Math., 172 (1996), 255-277. Zbl 0862.34015, MR 1379297
Reference: [T2] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions II.Pacific. J. Math., 172 (1996), 279-297. Zbl 0862.34015, MR 1379297
.

Files

Files Size Format View
ActaOlom_37-1998-1_12.pdf 2.119Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo