Title:
|
Approximation from the exterior of Carathéodory multifunctions (English) |
Author:
|
Benassi, Carlo |
Author:
|
Gavioli, Andrea |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
39 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
17-35 |
. |
Category:
|
math |
. |
MSC:
|
28B20 |
MSC:
|
52A27 |
MSC:
|
54C60 |
idZBL:
|
Zbl 1041.28009 |
idMR:
|
MR1826350 |
. |
Date available:
|
2009-01-29T15:56:22Z |
Last updated:
|
2012-05-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120414 |
. |
Reference:
|
[1] Andres J., Gabor G., Górniewicz L.: Acyclicity of Solution Sets to Functional Inclusions.Nonlin. Anal., (to appear). Zbl 1012.34011, MR 1894303 |
Reference:
|
[2] Aubin J. P., Cellina A.: Differential Inclusions. Set-valued Maps and Viability Theory.Springer Verlag, Berlin, 1984. Zbl 0538.34007, MR 0755330 |
Reference:
|
[3] Benassi C., Gavioli A.: Approximation from the exterior of a multifunction with connected values defined on an interval.Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 237-252. Zbl 0873.54021, MR 1282339 |
Reference:
|
[4] Benassi C., Gavioli A.: Approximation from the exterior of multifunctions with connected values.Set-Valued Analysis 2 (1994), 487-503. Zbl 0826.26012, MR 1308481 |
Reference:
|
[5] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310 |
Reference:
|
[6] De Blasi F.: Characterization of certain classes of semicontinuous multifunctions by continuous approximations.J. Math. Anal. Appl. 106 (1985), 1-18. MR 0780314 |
Reference:
|
[7] De Blasi F. S., Myjak J.: On the solution sets for differential inclusions.Bull. Polish Acad. Sci. 33 (1985), 17-23. MR 0798723 |
Reference:
|
[8] Deimling K.: Multivalued Differential Equations.De Gruyter series in Nonlinear Analysis and Applications, Berlin, 1992. Zbl 0820.34009, MR 1189795 |
Reference:
|
[9] El Arni A.: Multifonctions séparément mesurables et séparément sémicontinues inférieurement.Doctoral thesis, Université des Sciences et techniques du Languedoc, Montpellier, 1986. |
Reference:
|
[10] Gavioli A.: Approximation from the exterior of a multifunction and its applications in the "sweeping process".J. Differential Equations 92, 2 (1991), 373-383. Zbl 0744.41018, MR 1120911 |
Reference:
|
[11] Górniewicz L.: Topological approach to differential inclusions.In: Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995. MR 1368672 |
Reference:
|
[12] Haddad G.: Topological properties of the sets of solutions for functional differential inclusions.Nonlinear Anal. 5 (1981), 1349-1366. Zbl 0496.34041, MR 0646220 |
Reference:
|
[13] Ionescu Tulcea C.: On the approximation of upper semicontinuous correspondences and the equilibrium of generalized games.J. Math. Anal. Appl. 136 (1988), 267-289. MR 0972598 |
. |