Previous |  Up |  Next

Article

Title: On the Lefschetz fixed point theorem for multivalued weighted mappings (English)
Author: Skiba, Robert
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 40
Issue: 1
Year: 2001
Pages: 201-214
.
Category: math
.
MSC: 47H10
MSC: 54C55
MSC: 54C60
MSC: 55M15
MSC: 55M20
idZBL: Zbl 1058.47048
idMR: MR1904696
.
Date available: 2009-01-29T16:01:48Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120432
.
Reference: [1] Borsuk K.: Theory of retracts.Monografie Matematyczne PAN, PWN Warszawa, 1967. Zbl 0153.52905, MR 0216473
Reference: [2] Darbo G.: Teoria dell’ omologia in una categoria di mappe plurivalenti ponderate.Rend. Sem. Mat. Univ. Padova 28 (1958), 188-224. Zbl 0097.38704, MR 0105093
Reference: [3] Darbo G.: Sulle coincidenze di mappe ponderate.Rend. Sem. Mat. Univ. Padova 29 (1959), 256-270. Zbl 0089.39001, MR 0126284
Reference: [4] Darbo G.: Estensione alle mappe ponderate del teorema Lefshetz sui punti fissi.Rend. Sem. Mat. Univ. Padova 31 (1961), 46-57. MR 0137119
Reference: [5] Fournier G., Górniewicz L.: The Lefschetz fixed point theorem for some non-compact multivalued maps.Fundamenta Mathematicae 94 (1977). MR 0436123
Reference: [6] Górniewicz L.: Topological fixed point theory of multivaled mappings.Kluwer, 1999. MR 1748378
Reference: [7] Górniewicz L.: Homological methods in the fixed point theory of multivalued maps.Dissertationes Math., Warszawa 129 (1976). MR 0394637
Reference: [8] Granas A.: Generalizing the Hopf-Lefschetz fixed point theorem for non-compact ANR-s.Symposium on Infinite Dimensional Topology, Bâton-Rouge, 1967.
Reference: [9] von Haeseler F., Skordev G.: Borsuk-Ulam theorem, fixed point index and chain approximation for maps with multiplicity.Pacific J. of Math. 153, 2 (1992), 369-396. MR 1151567
Reference: [10] Jerrard R.: Homology with multivalued functions applied to fixed points.Trans. AMS 213 (1975), 407-428. MR 0380778
Reference: [11] Jodko-Narkiewicz S.: Topological degree of weighted mappings.UMK Toruń, 1989, (in Polish).
Reference: [12] Pejsachowicz J.: Relation between the homotopy and the homology theory of weighted mappings.Bollettino U. M. I. 15-B (1978), 285-302. Zbl 0391.55009, MR 0515493
Reference: [13] Pejsachowicz J.: The homotopy theory of weighted mappings.Bollettino U. M. I. 14-B (1977), 702-720. Zbl 0452.55006, MR 0500939
Reference: [14] Spanier E.: Algebraic topology.McGraw-Hill, 1966. Zbl 0145.43303, MR 0210112
.

Files

Files Size Format View
ActaOlom_40-2001-1_19.pdf 900.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo