Previous |  Up |  Next

Article

Title: Quartic smoothing splines generalized (English)
Author: Kobza, Jiří
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 42
Issue: 1
Year: 2003
Pages: 27-41
.
Category: math
.
MSC: 41A15
MSC: 65D05
idZBL: Zbl 1049.41005
idMR: MR2056020
.
Date available: 2009-01-29T16:03:08Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/120463
.
Reference: [1] Atteia M.: Hilbertian Kernels and Spline Functions.Elsevier, 1992. Zbl 0767.41015, MR 1205348
Reference: [2] Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062
Reference: [3] Dierckx P.: Curve and Surface Fitting with Splines.Clarendon Press, 1993. Zbl 0782.41016, MR 1218172
Reference: [4] Fletcher R.: Practical Methods of Optimization.Wiley, 1993. MR 0955799
Reference: [5] Gould N.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem.Mathematical Programming 32 (1985) 90-99. Zbl 0591.90068, MR 0787745
Reference: [6] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 34 (1995), 75-89. Zbl 0854.41011, MR 1447257
Reference: [7] Kobza J.: Local representation of quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. MR 1620525
Reference: [8] Kobza J.: Generalized spline smoothing.Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis, Math. 8 (2001), 33-46. MR 1843365
Reference: [9] Kobza J.: Quartic splines with minimal norms.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 83-104. MR 1904689
Reference: [10] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. Zbl 0958.41004, MR 1620529
Reference: [11] Laurent P.-J.: Approximation et optimisation.Paris, Herman, 1972. Zbl 0238.90058, MR 0467080
Reference: [12] Reinsch C.: Smoothing by spline functions.Numer. Math. 10 (1967), 177-183; 16 (1971) 451-454. Zbl 0161.36203
Reference: [13] Lyche T., Schumaker L. L.: Computation of smoothing and interpolating natural splines via local bases.SIAM Jour. Numer. Anal. 10 (1973), 1027-1038. Zbl 0239.65015, MR 0336959
Reference: [14] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh, 1990. Zbl 0701.41015, MR 1208909
Reference: [15] Vasilenko V. A.: Spline Functions.Nauka, Novosibirsk, 1983 (in Russian). Zbl 0529.41013
Reference: [16] Wahba G.: Spline Models for Observational Data.SIAM, 1990. Zbl 0813.62001, MR 1045442
Reference: [17] Verschinin V. V., Zavjalov J. S., Pavlov N. N.: Extremal properties of Splines and the Smoothing problem.Nauka, Novosibirsk, 1988 (in Russian).
Reference: [18] Zavjalov J. S., Kvasov B. I., Miroschnichenko V. L.: Methods of Spline-Functions.Nauka, Moscow, 1985 (in Russian).
.

Files

Files Size Format View
ActaOlom_42-2003-1_4.pdf 1.935Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo