Previous |  Up |  Next

Article

Title: Complete solution of parametrized Thue equations (English)
Author: Heuberger, C.
Author: Pethő, A.
Author: Tichy, R. F.
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 6
Issue: 1
Year: 1998
Pages: 93-114
.
Category: math
.
MSC: 11D57
MSC: 11D59
MSC: 11Y50
idZBL: Zbl 1024.11017
idMR: MR1822519
.
Date available: 2009-01-30T09:06:13Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120521
.
Reference: [1] A. Baker. : Contribution to the theory of Diophantine equations I.On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A, 263:173-191, 1968. MR 0228424
Reference: [2] A. Baker, H. Davenport. : The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$.Quart. J. Math. Oxford, 20:129-137, 1969. MR 0248079
Reference: [3] A. Baker, G. Wüstholz. : Logarithmic forms and group varieties.J. reine angew. Math., 442:19-62, 1993. Zbl 0788.11026, MR 1234835
Reference: [4] Yu. Bilu, G. Hanrot. : Solving Thue Equations of High Degree.J. Number Theory, 60:373-392, 1996. Zbl 0867.11017, MR 1412969
Reference: [5] E. Bombieri, W. M. Schmidt. : On Thue's equation.Invent. Math., 88:69- 81, 1987. Zbl 0614.10018, MR 0877007, 10.1007/BF01405092
Reference: [6] Y. Bugeaud, K. Gyory. : Bounds for the solutions of Thue-Mahler equations and norm form equations.Acta Arith., 74(3):273-292, 1996. Zbl 0861.11024, MR 1373714
Reference: [7] J. H. Chen, P. M. Voutier. : Complete solution of the Diophantine Equation $X^2 + 1 = dY^4$ and a Related Family of Quartic Thue Equations.J. Number Theory, 62:71-99, 1997. MR 1430002
Reference: [8] H. Cohen. : A Course in Computational Algebraic Number Theory.volume 138 of Graduate Texts in Mathematics. Springer, Berlin etc., third edition, 1996. MR 1228206
Reference: [9] M. Daberkow C. Fieker J. Kluners M. E. Pohst K. Roegner, and K. Wildanger. : KANT V4.To appear in J. Symbolic Cornput., 1997.
Reference: [10] I. Gaal. : On the resolution of some diophantine equations.In A. Petho, M. Pohst, H. C. Williams, and H. G. Zimmer, editors, Computational Number Theory, pages 261-280. De Gruyter, Berlin - New York, 1991. Zbl 0733.11054, MR 1151869
Reference: [11] F. Halter-Koch G. Lettl A. Petho, and R. F. Tichy. : Thue equations associated with Ankeny-Brauer-Chowla Number Fields.To appear in J. London Math. Soc. MR 1721811
Reference: [12] C. Heuberger. : On a family of quintic Thue equations.To appear in J. Symbolic Comput. Zbl 0915.11017, MR 1635238
Reference: [13] S. Lang. : Elliptic Curves: Diophantine Analysis.volume 23 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin - New York, 1978. Zbl 0388.10001, MR 0518817
Reference: [14] M. Laurent M. Mignotte, and Yu. Nesterenko. : Formes lineaires en deux logarithmes et determinants d'interpolation.J. Number Theory, 55:285-321, 1995. MR 1366574
Reference: [15] E. Lee. : Studies on Diophantine equations.PhD thesis, Cambridge University, 1992.
Reference: [16] G. Lettl, A. Petho. : Complete Solution of a Family of Quartic Thue Equations.Abh. Math. Sem. Univ. Hamburg, 65:365-383, 1995. Zbl 0853.11021, MR 1359142
Reference: [17] G. Lettl A. Petho, and P. Voutier. : On the arithmetic of simplest sextic fields and related Thue equations.In K. Gyory, A. Petho, and V. T. Sos, editors, Number Theory, Diophantine, Computational and Algebraic Aspects, pages 331-348. W. de Gruyter Publ. Co, 1998. MR 1628852
Reference: [18] G. Lettl A. Petho, and P. Voutier. : Simple families of Thue inequalities.To appear in Trans. Amer. Math. Soc. MR 1487624
Reference: [19] K. Mahler. : An inequality for the discriminant of a polynomial.Michigan Math. J., 11:257-262, 1964. Zbl 0135.01702, MR 0166188
Reference: [20] M. Mignotte. : Pethö's cubics.Preprint. Zbl 0960.11020
Reference: [21] M. Mignotte. : Verification of a Conjecture of E. Thomas.J. Number Theory, 44:172-177, 1993. Zbl 0780.11013, MR 1225951
Reference: [22] M. Mignotte A. Pethö, and R. Roth. : Complete solutions of quartic Thue and index form equations.Math. Comp., 65:341-354, 1996. MR 1316596
Reference: [23] M. Mignotte A. Pethö, and F. Lemmermeyer. : On the family of Thue equations $x^3 - (n - 1)x{^2}y - (n + 2)xy^2 - y^3 = k$.Acta Arith., 76:245-269, 1996. MR 1397316
Reference: [24] M. Mignotte, N. Tzanakis. : On a family of cubics.J. Number Theory, 39:41-49, 1991. Zbl 0734.11025, MR 1123167
Reference: [25] A. Pethö. : Complete solutions to families of quartic Thue equations.Math. Comp., 57:777-798, 1991. Zbl 0738.11028, MR 1094956
Reference: [26] A. Pethö, R. Schulenberg. : Effektives Losen von Thue Gleichungen.Publ. Math. Debrecen, 34:189-196, 1987. MR 0934900
Reference: [27] A. Pethö, R. F. Tichy. : On two-parametric quartic families of diophantine problems.To appear in J. Symbolic Comput. MR 1635234
Reference: [28] M. Pohst, H. Zassenhaus. : Algorithmic algebraic number theory.Cambridge University Press, Cambridge etc., 1989. Zbl 0685.12001, MR 1033013
Reference: [29] E. Thomas. : Complete Solutions to a Family of Cubic Diophantine Equations.J. Number Theory, 34:235-250, 1990. Zbl 0697.10011, MR 1042497
Reference: [30] E. Thomas. : Solutions to Certain Families of Thue Equations.J. Number Theory, 43:319-369, 1993. Zbl 0774.11013, MR 1212687
Reference: [31] A. Thue. : Über Annaherungswerte algebraischer Zahlen.J. reine angew. Math., 135:284-305, 1909.
Reference: [32] N. Tzanakis, B. M. M. de Weger. : On the practical solution of the Thue equation.J. Number Theory, 31:99-132, 1989. Zbl 0657.10014, MR 0987566
Reference: [33] P. Voutier. : Linear forms in three logarithms.Preprint.
Reference: [34] I. Wakabayashi. : On a Family of Quartic Thue Inequalities I.J. Number Theory, 66:70-84, 1997. Zbl 0884.11021, MR 1467190
.

Files

Files Size Format View
ActaOstrav_06-1998-1_12.pdf 3.221Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo