Previous |  Up |  Next

Article

Title: $p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$ (English)
Author: Kovalevskaya, E. I.
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 10
Issue: 1
Year: 2002
Pages: 71-78
.
Category: math
.
MSC: 11J61
MSC: 11J83
idZBL: Zbl 1069.11027
idMR: MR1943025
.
Date available: 2009-01-30T09:09:31Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120587
.
Reference: [1] Khintchine A.: Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Diophantischen Approximationen.Math. Ann. 92 (1924), 115-125. MR 1512207, 10.1007/BF01448437
Reference: [2] Mahler K.: Über Transzendente p-adische Zahlen.Compozitio Mathematica. 2 (1935), 259-275. Zbl 0012.05302, MR 1556919
Reference: [3] Adams W. W.: Transcendental numbers in the p-adic domain.Amer. J. Math. 88 (1966), 279-308. Zbl 0144.29301, MR 0197399, 10.2307/2373193
Reference: [4] Mahler K.: p-adic numbers and their functions.Cambridge, 1981. Zbl 0444.12013, MR 0644483
Reference: [5] Beresnevich V., Kovalevskaya E.: A full analogue of the Khintchine theorem for planar curves in $Z_p$.Preprint, Institute of Math. NAS Belarus. 2 (556) Minsk, 2000.
Reference: [6] Bernik V., Dodson M.: Metric Diophantine approximation on manifolds.Cambridge Tracts in Math. 137, Camb. Univ. Press, Cambridge, 1999. Zbl 0933.11040, MR 1727177
Reference: [7] Melnichuk, Yu.: On the metric theory of the joint Diophantine approximation of p-adic numbers.Dokl. Akad. Nauk Ukrain. SSR, Ser. A.5 (1078), 394-397.
Reference: [8] Kovalevskaya E.: The convergence Khintchine theorem for polynomials and planar p-adic curves.Tatra Mt. Math. Publ. 20 (2000), 163-172. Zbl 0992.11043, MR 1845457
Reference: [9] Silaeva N.: On analogue of Schmidt's theorem for curves in 3-dimensional p-adic spase.Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 4 (2001), 35-41.
Reference: [10] Beresnevich V., Vasilyev D.: An analogue of the Khintchine theorem for curves in 3-dimensional complex space.Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 1 (2001), 5-7.
Reference: [11] Bernik V., Kovalevskaya E.: Extremal property of some surfaces in n-dimensional Euclidean space.Mat. Zarnetki 15 N 2, 247-254. Zbl 0287.10045
.

Files

Files Size Format View
ActaOstrav_10-2002-1_7.pdf 652.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo