Previous |  Up |  Next

Article

Title: 17 necessary and sufficient conditions for the primality of Fermat numbers (English)
Author: Křížek, Michal
Author: Somer, Lawrence
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 11
Issue: 1
Year: 2003
Pages: 73-79
.
Category: math
.
MSC: 05C20
MSC: 11A07
MSC: 11A51
idZBL: Zbl 1227.11029
idMR: MR2037310
.
Date available: 2009-01-30T09:10:34Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120594
.
Reference: [1] Btermann K.-R.: Thomas Clausen, Mathematiker und Astronom.J. Reine Angew. Math. 216, 1964, 159-198. MR 0164862
Reference: [2] Crandall R. E., Mayer E., Papadopoulos J.: The twenty-fourth Fermat number is composite.Math. Comp., accepted, 1999, 1-21.
Reference: [3] Gauss C. P.: Disquisitiones arithmeticae.Springer, Berlin 1986. Zbl 0585.10001, MR 0837656
Reference: [4] Inkeri K.: Tests for primality.Ann. Acad. Sci. Fenn. Ser. A I No. 279 1960, 1-19. Zbl 0092.27506, MR 0117202
Reference: [5] Jones R,, Pearce J.: A postmodern view of fractions and the reciprocals of Fermat primes.Math. Mag. 73, 2000, 83-97. MR 1822751, 10.2307/2691078
Reference: [6] Křížek M., Chleboun J.: A note on factorization of the Fermat numbers and their factors of the form $3h2^n + 1$.Math. Bohem. 119, 1994, 437-445. MR 1316595
Reference: [7] Křížek M., Luca F., Somer L.: 17 lectures on the Fermat numbers. From number theory to geometry.Springer-Verlag, New York 2001. MR 1866957
Reference: [8] Křížek M., Somer L.: A necessary and sufficient condition for the primality of Fermat numbers.Math. Bohem. 126, 2001, 541-549. MR 1970256
Reference: [9] Luca F.: Fermat numbers and Heron triangles with prime power sides.Amer. Math. Monthly, accepted in 2000.
Reference: [10] Lucas E.: Theoremes d'arithmétique.Atti della Reale Accademia delle Scienze di Torino 13, 1878, 271-284.
Reference: [11] Mcintosh R.: A necessary and sufficient condition for the primality of Fermat numbers.Amer. Math. Monthly 90, 1983, 98-99. Zbl 0513.10012, MR 0691180, 10.2307/2975806
Reference: [12] Morehead J. C.: Note on Fermat's numbers.Bull. Amer. Math. Soc. 11, 1905, 543-545. MR 1558255, 10.1090/S0002-9904-1905-01255-6
Reference: [13] Pepin P.: Sur la formule $2^{2^n} + 1$.C. R. Acad. Sci. 85, 1877, 329-331.
Reference: [14] Somer L., Křížek M.: On a connection of number theory with graph theory.Czechoslovak Math. J. (submitted) MR 2059267
Reference: [15] Szalay L.: A discrete iteration in number theory.(Hungarian), BDTF Tud, Kozi. VIII. Termeszettudomanyok 3., Szombathely, 1992, 71-91. Zbl 0801.11011
Reference: [16] Vasilenko O. N.: On some properties of Fermat numbers.(Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 5 1998, 56-58. Zbl 1061.11500, MR 1708238
Reference: [17] Wantzel P. L.: Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regie et le compas.J. Math. 2, 1837, 366-372.
.

Files

Files Size Format View
ActaOstrav_11-2003-1_5.pdf 997.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo