Previous |  Up |  Next

Article

Title: O reálném integrálu $$\int {\frac{(Bx+C),dx}{(\alpha x^2+2\beta x+\gamma)\,\sqrt{ax^2+2bx+c}}}$$ s podmínkou $\alpha \gamma -\beta ^2>0$ (Czech)
Title: ** On the real integral $$\int {\frac{(Bx+C),dx}{(\alpha x^2+2\beta x+\gamma)\,\sqrt{ax^2+2bx+c}}}$$ where $\alpha \gamma -\beta ^2>0$ (English)
Title: Über das reelle Integral $$\int {\frac{(Bx+C),dx}{(\alpha x^2+2\beta x+\gamma)\,\sqrt{ax^2+2bx+c}}}$$ mit der Bedingung $\alpha \gamma -\beta ^2>0$ (German)
Title: Sur l’intégrale réelle $$\int {\frac{(Bx+C),dx}{(\alpha x^2+2\beta x+\gamma)\,\sqrt{ax^2+2bx+c}}}$$ sous la condition $\alpha \gamma -\beta ^2>0$ (French)
Author: Zimmerman, V.
Language: Czech
Journal: Časopis pro pěstování matematiky a fysiky
ISSN: 1802-114X (printed edition, 1872-1950)
Volume: 58
Issue: 2
Year: 1929
Pages: 226-248
Summary lang: French
.
Category: math
.
idZBL: JFM 55.0741.02
DOI: 10.21136/CPMF.1929.124021
.
Date available: 2009-08-29T17:14:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/124021
.

Files

Files Size Format View
CasPestMatFys_058-1929-2_3.pdf 4.127Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo