Previous |  Up |  Next

Article

Title: O stochastické aproximaci (Czech)
Title: On stochastic approximation (English)
Author: Dupač, Václav
Language: Czech
Journal: Kybernetika
ISSN: 0023-5954
Volume: 17
Issue: 7
Year: 1981
Pages: (1),3-40
.
Category: math
.
MSC: 62L20
idZBL: Zbl 0541.62066
.
Date available: 2009-09-24T17:25:27Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124254
.
Reference: [1] D. Anbar: On optimal estimation methods using stochastic approximation procedures.Ann. Statist. 1 (1973), 1175-1184. Zbl 0277.62064, MR 0351001
Reference: [2] D. L. Burkholder: On class of stochastic approximation procedures.Ann. Math. Statist. 27 (1956), 1044-1059. MR 0085653
Reference: [3] J. L. Doob: Stochastic Processes.J. Wiley, New York 1953. Zbl 0053.26802, MR 0058896
Reference: [4] V. Dupač: A dynamic stochastic approximation.Ann. Math. Statist. 36 (1965), 1695 - 1702. MR 0193724
Reference: [5] V. Dupač: O Kiefer-Wolfowitzově aproximační metodě.Časopis Pěst. Matem. 82 (1957), 47-75. MR 0089556
Reference: [6] V. Dupač: On the dynamic stochastic approximation.Banach Center Publications, vol. 6, 109-110. Warszawa 1980.
Reference: [7] V. Dupač F. Král: Robbins-Monro procedure with both variables subject to experimental error.Ann. Math. Statist. 43 (1972), 1089-1095. MR 0336935
Reference: [8] V. Fabian: On asymptotic normality in stochastic approximation.Ann. Math. Statist. 39 (1968), 1327-1332. Zbl 0176.48402, MR 0231429
Reference: [9] V. Fabian: Stochastic approximation of minima with improved asymptotic speed.Ann. Math. Statist. 38 (1967), 191-200. Zbl 0147.18003, MR 0207136
Reference: [10] B. Ф. Ганошкин T. П. Красулина: О законе повторного логарифма в процессах стохастической аппроксимации.Teop. вepoятн. и ee примен. 19 (1974), 879 - 886. Zbl 1235.49003
Reference: [11] L. Györfi: Stochastic approximation from ergodic sample for linear regression.Z. Wahrscheinlich. Verw. Geb. 54 (1980), 47-55. MR 0595479
Reference: [12] D. L. Hanson R. P. Russo: A new stochastic approximation procedure using quantile curves.Z. Wahrscheinlich. Verw. Geb. (v tisku).
Reference: [13] K. L. Chung: On a stochastic approximation method.Ann. Math. Statist. 25 (1954), 463 - 483. Zbl 0059.13203, MR 0064365
Reference: [14] J. Komlós P. Révész: A modification of the Robbins-Monro process.Stud. Sci. Math. Hung. 8 (1973), 329-340. MR 0351004
Reference: [15] T. П. Красулина: Метод стохастической аппроксимации для определения найбольшего собственного числа математического ожидания случайных матриц.Aвтоматика и телемеханика 1970, 2, 50- 56. Zbl 1170.92319
Reference: [16] H. J. Kushner D. S. Clark: Stochastic Approximation Methods for Constrained and Unconstrained Systems.Springer-Verlag, New York 1978. MR 0499560
Reference: [17] H. J. Kushner E. Sanvicente: Penalty function methods for constrained stochastic approximation.J. Math. Anal. and Applications 46 (1974), 499-512. MR 0343506
Reference: [18] T. L. Lai H. Robbins: Adaptive design and stochastic approximation.Ann. Statist. 7 (1979), 1196-1221. MR 0550144
Reference: [19] L. Ljung: Analysis of recursive stochastic algorithms.IEEE Trans. Autom. Control AC-22 (1977), 551-575. Zbl 0362.93031, MR 0465458
Reference: [20] P. Major P. Révész: A limit theorem for the Robbins-Monro approximation.Z. Wahrscheinlich. Verw. Geb. 27 (1973), 79-86. MR 0359213
Reference: [21] P. Mandl: Elements of stochastic analysis.Kybernetika 14 (1978), příloha. Zbl 0382.60002, MR 0506651
Reference: [22] M. Б. Hевельсон P. З. Хасьминский: Стохастическая аппроксимация и рекуррентное оценивание.Hayкa, Mocквa. 1972. Zbl 1049.82501
Reference: [23] G. Pflug: Stetige stochastische Approximation.Metrika 26 (1979), 139-150. Zbl 0418.62066, MR 0548412
Reference: [24] P. Révész: How to apply the method of stochastic approximation in the nonparametric estimation of a regression function.Math. Operationsforsch. Statist., Ser. Statistics 8 (1977), 119-126. MR 0501557
Reference: [25] P. Révész: Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I.Stud. Sci. Math. Hung. 5 (1973), 391-398. MR 0373198
Reference: [26] H. Robbins S. Monro: A stochastic approximation method.Ann. Math. Statist. 22 (1951), 400-407. MR 0042668
Reference: [27] H. Robbins D. Siegmund: A convergence theorem for non negative almost supermartin-gales and some applications.In: Optimizing Methods in Statistics (J. S. Rustagi, ed.). Academic Press, New York 1971, 233-257. MR 0343355
Reference: [28] W. Stout: A martingale analogue of Kolmogorov's law of the iterated logarithm.Z. Wahrscheinlich. verw. Geb. 15 (1970), 279-290. Zbl 0209.49004, MR 0293701
Reference: [29] J. H. Venter: An extension of the Robbins-Monro procedure.Ann. Math. Statist. 38 (1967), 181-190. Zbl 0158.36901, MR 0205396
.

Files

Files Size Format View
Kybernetika_17-1981-7_1.pdf 4.045Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo