Previous |  Up |  Next

Article

Title: Duality theory in mathematical programming and optimal control (English)
Author: Outrata, Jiří V.
Author: Jarušek, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 20
Issue: 8
Year: 1984
Pages: (1),3-119
.
Category: math
.
MSC: 49-02
MSC: 49A27
MSC: 49M37
MSC: 49N15
MSC: 90-02
MSC: 90C46
MSC: 90C48
idZBL: Zbl 0589.90066
idMR: MR0795002
.
Date available: 2009-09-24T17:44:33Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124255
.
Reference: [1] E. Asplund, R. T. Rockafellar: Gradients of convex functions.Trans. Amer. Math. Society 189 (1969), 443-467. Zbl 0181.41901, MR 0240621
Reference: [2] A. Auslender: Optimization, Methodes Numeriques.Masson, Paris 1976. MR 0441204
Reference: [3] V. I. Blagodatskich: On the convexity of reachable sets.(in Russian). Differenciaľnye Uravnenija VIII (1972), 2149-2155.
Reference: [4] F. L. Chernousko, N. V. Banichuk: Variational Problems of Mechanics and Control.(in Russian). Nauka, Moskva 1973.
Reference: [5] A. Charnes, W. W. Cooper: Programming with linear fractional functional.Naval Res. Logist. Quart. 9 (1962), 181-196. MR 0152370
Reference: [6] R. J. Duffin E. L. Peterson, C. Zener: Geometric Programming - Theory and Application.J. Wiley and Sons, New York 1967. MR 0214374
Reference: [7] R. E. Edwards: Functional Analysis - Theory and Applications.Holt, Rinehart ard Winston, New York 1965. Zbl 0182.16101, MR 0221256
Reference: [8] I. Ekeland, R. Temam: Analyse Convexe et Problèmes Variationnels.Dunod, Paris 1974. Zbl 0281.49001, MR 0463993
Reference: [9] E. G. Golshtein: Gradient methods for determination of saddle points and modified Lagrangians.In: Proc. of the Workshop "Matem. Optimierung - Theorie und Anwendungen", Wartburg/Eisenach 1983.
Reference: [10] M. R. Hestenes: Multiplier and gradient methods.J. Optimiz. Theory Appl. 4 (1969), 303-320. Zbl 0208.18402, MR 0271809
Reference: [11] O. A. Ladyzhenskaya: Boundary Value Problems of Mathematical Physics.(in Russian). Nauka, Moskva 1973. MR 0599579
Reference: [12] C. Lemaréchal: Nondifferentiable optimization, subgradient and $\epsilon$-subgradient methods.In: Numerical Methods in Optimization and Operations Research (Proc. of a Conference held at Oberwolfach, 1975), Springer Verlag, Berlin 1976. MR 0496691
Reference: [13] C. Lemaréchal: A view of line-searches.In: Optimization and Optimal Control (Proc. of a Conference held at Oberwolfach, 1980, A. Auslender, W. Oettli, J. Stoer, eds.), Springer Verlag, Berlin 1981. MR 0618474
Reference: [14] P. O. Lindberg: A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality.In: Survey of Mathematical Programming (Proc. of the 9th Internat. Mathematical Programming Symp., A Prekopa, ed.), Budapest 1976.
Reference: [15] P. O. Lindberg: Report TRITA-MAT-1976-12.Dept. of Math., Royal Inst, of Technology, Stockholm.
Reference: [16] D. E. Luenberger: Optimization by Vector Space Methods.J. Wiley and Sons, New York 1968.
Reference: [17] G. P. McCormick: Nonlinear Programming.J. Wiley and Sons, New York 1983. Zbl 0563.90068, MR 0693095
Reference: [18] G. D. Maistrovskii: Gradient methods for finding saddle points.(in Russian). Ekonom. i Mat. Metody 12 (1976), 917-929. MR 0451122
Reference: [19] J. J. Moreau: Proximité et dualité dans un espace Hilbertian.Bull. Soc. Math. France 93 (1965),273-299. MR 0201952
Reference: [20] J. V. Outrata: Duality theory for a class of discrete optimal control problems.In: Proc. 1978 IFAC Congress, 2, 1085-1092, Pergamon Press, London 1978.
Reference: [21] J. V. Outrata, Z. Schindler: Augmented Lagrangians for a class of convex continuous optimal control problems.Problems Control Inform. Theory 10 (1981), 67-81. MR 0618443
Reference: [22] J. V. Outrata, J. Jarušek: On Fenchel dual schemes in convex optimal control problems.Kybernetika 18 (1982), 1-21. MR 0679777
Reference: [23] B. T. Polyak: A general method for solution of extremal problems.Doklady AN SSSR 174 (1967), 33-36. In Russian. MR 0217997
Reference: [24] B. T. Polyak: Minimization of nonsmooth functionals.Zh. vych. mat. i mat. fiz. 9 (1969) 504-521. In Russian. MR 0250452
Reference: [25] J. Ch. Pomerol, P. Levine: Sufficient conditions for Kuhn-Tucker vectors in convex programming.SIAM J. Control Optimiz. 17 (1976), 689-699. MR 0548698
Reference: [26] M. J. D. Powell: A method for nonlinear constraints in minimization problems.In: Optimization (R. Fletcher, ed.), Academic Press, New York 1969, 283 - 298. Zbl 0194.47701, MR 0272403
Reference: [27] R. T. Rockafellar: Extension of Fenchel's duality theorem for convex functions.Duke Math. J. ii(1966), 81-89. Zbl 0138.09301, MR 0187062
Reference: [28] R. T. Rockafellar: Integrals which are convex functionals.Pacific J. Math. 24 (1968), 525-539. Zbl 0159.43804, MR 0236689
Reference: [29] R. T. Rockafellar: Some convex programs whose duals are linearly constrained.In: Non-linear Programming (J. B. Rosen, O. L. Mangasarian, K. Ritter, eds.), Academic Press, New York 1970, 293-322. Zbl 0252.90046, MR 0281500
Reference: [30] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by unconstrained optimization.Math. Programming 5 (1973), 354-373. Zbl 0279.90035, MR 0371416
Reference: [31] R. T. Rockafellar: The multiplier method of Hestenes and Powell applied to convex programming.J. Optimiz. Theory Appl. 12 (1973), 555 - 562. Zbl 0254.90045, MR 0334953
Reference: [32] R. T. Rockafellar: Conjugate Duality and Optimization.SIAM/CBMS monograph series No. 16, SIAM Publications, 1974. Zbl 0296.90036, MR 0373611
Reference: [33] S. Schaible: Parameter-free convex equivalent and dual programs of fractional programming problems.Z. Oper. Res. 18 (1974), 187-196. Zbl 0291.90067, MR 0351464
Reference: [34] S. Schaible: Duality in fractional programming: A unified approach.Oper. Res. 24 (1976), 452-461. Zbl 0348.90120, MR 0411644
Reference: [35] S. Schaible: Fractional programming. I. Duality.Management Sci. 22 (1976), 858-867. Zbl 0338.90050, MR 0421679
Reference: [36] J. F. Toland: Duality in nonconvex optimization.J. Math. Anal. Appl. 66 (1978), 399-415. Zbl 0403.90066, MR 0515903
Reference: [37] J. F. Toland: A duality principle for non-convex optimisation and the calculus of variations.Arch. Rat. Mech. Anal. 71 (1979), 41-61. Zbl 0411.49012, MR 0522706
Reference: [38] A. P. Wierzbicki, S. Kurcyusz: Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space.SIAM J. Control Optimiz. 75 (1977), 25-56. Zbl 0355.90045, MR 0438720
Reference: [39] J. Nedoma: Contribution to the Arrow-Hurwicz concave programming method.Ekonomicko-matematický obzor 2 (1966), 247-260. MR 0204160
Reference: [40] K. J. Arrow, L. Hurwicz: Reduction of constrained maxima to saddlepoint problems.In: Proc. of 3-rd Berkeley Symposium on Mathematical Statistical and Probability. Univ. of California Press, Berkeley 1956. MR 0084938
Reference: [41] K. J. Arrow F. J. Gould, S. M. Howe: A generalized saddle-point result for constrained optimization.Math. Programming 5 (1973), 225-234. MR 0329641
Reference: [42] M. Atteia, A. El Quortobi: Quasi-convex duality.In: Optimization and Optimal Control (Proc. of a Conf. Held at Oberwolfach March 1980; A. Auslender, W. Oettli, J. Stoer, eds.). L. N. in Control Inform. Sci., Vol. 30, Springer-Verlag, Berlin 1981.
Reference: [43] E. J. Balder: An extension of duality-stability relations to nonconvex optimization problems.SIAM J. Control Optim. 75 (1977), 329-343. Zbl 0366.90103, MR 0452694
Reference: [44] A. Ben-Tal, A. Ben-Israel: F-convex functions: properties and applications.In: Generalized Concavity in Optimization and Economics. Academic Press, New York 1981. Zbl 0535.90074
Reference: [45] D. P. Bertsekas: Combined primal-dual and penalty methods for constrained minimization.SIAM J. Control 13 (1975), 521-544. Zbl 0269.90044, MR 0372719
Reference: [46] D. P. Bertsekas: Constrained-Optimization and Lagrange Multiplier Methods.Academic Press, New York 1982. Zbl 0572.90067, MR 0690767
Reference: [47] J. D. Buys: Dual Algorithms for Constrained Optimization.Thesis, Leiden 1972. MR 0334506
Reference: [48] B. D. Craven: Invex functions and constrained local minima.Bull. Austral. Math. Soc. 24 (1981), 357-366. Zbl 0452.90066, MR 0647362
Reference: [49] J. P. Crouzeix: Conjugacy in quasiconvex analysis.In: Convex Analysis and Its Applications. (Proc. of a Conference Held at Murat-le-Quaire, March 1976, A. Auslender, ed.). L. N. in Econom. and Math. Systems, Vol. 144. Springer-Verlag, Berlin 1977. MR 0482465
Reference: [50] J. P. Crouzeix: Conditions for convexity of quasiconvex functions.Math. Oper. Res. 5 (1980), 120-125. Zbl 0428.26007, MR 0561160
Reference: [51] J. P. Crouzeix, J. A. Ferland: Criteria for quasiconvexity and pseudoconvexity and their relationships.In: Generalized Concavity in Optimization and Economics. Academic Press, New York 1981. Zbl 0538.90079
Reference: [52] V. F. Demyanov, V. N. Malozemov: An Introduction to Minimax.(in Russian). Nauka, Moscow 1972. MR 0475822
Reference: [53] R. Deumlich, K.-H. Elster: $\phi$-conjugation and nonconvex optimization.Math. Operationsforsch. Statist. Ser. Optim. 14 (1983), 125-149. Zbl 0524.90081, MR 0694807
Reference: [54] S. Dolecki, S. Kurcyusz: On $\phi$-convexity in extremal problems.SIAM J. Control Optim. 16 (1978), 277-300. Zbl 0397.46013, MR 0479394
Reference: [55] S. Dolecki: Semicontinuity in constrained optimization. Part II.Control. Cybernet. 7 (1978), 51-68. Zbl 0422.90086, MR 0641918
Reference: [56] M. Dragomirescu: H-duality.In: Proc. of the 6th Conference on Probability Theory, Brasov, Sept. 1979, (B. Bereanu, Ş. Grigorescu, M. Iosifescu, T. Postelnicu, eds.). Ed. Acad. Rep. Soc. Rom., Bucureşti 1981. Zbl 0484.90079, MR 0589566
Reference: [57] I. Ekeland: Legendre duality in nonconvex optimization and calculus of variations.SIAM J. Control. Optim. 15 (1977), 905-934. Zbl 0377.90089, MR 0458479
Reference: [58] I. Ekeland: Problèmes variationnels non convexes en dualité.C. R. Acad. Sci. Paris, t. 291, Série A-493 (1980). Zbl 0448.90063, MR 0599991
Reference: [59] F. J. Gould: Extensions of Lagrange multiplier functions and duality in nonconvex programming.SIAM J. Appl. Math. 17 (1969), 1280-1297. MR 0263426
Reference: [60] H. J. Greensberg, W. P. Pierskalla: Quasiconjugate functions and surrogate duality.Cahiers Centre Études Rech. Oper. 15 (1973), 437-448. MR 0366402
Reference: [61] R. Kaltcheva J. V. Outrata Z. Schindler, M. Straškraba: An optimization model for the economic control of reservoir eutrophication.Ecological Modelling 77 (1982), 121-128.
Reference: [62] P. Kanniappan: Fenchel-Rockafellar type duality for a non-convex non-differentia! optimization problem.J. Math. Anal. Appl. 97 (1983), 266-276. MR 0721242
Reference: [63] F. Lempio, H. Maurer: Differential stability in infinite-dimensional nonlinear programming.Appl. Math. Optim. 6 (1980), 139-152. Zbl 0426.90072, MR 0563531
Reference: [64] H. Maurer, J. Zowe: First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems.Math. Programming 16 (1979), 98-110. Zbl 0398.90109, MR 0517762
Reference: [65] O. L. Mangasarian: Unconstrained Lagrangians in nonlinear programming.SIAM J. Control 13 (1975), 772-791. Zbl 0269.90045, MR 0373626
Reference: [66] H. Nakayama H. Sagama, Y. Sawaragi: A generalized Lagrangian dnd multiplier method.J. Optim. Theory Appl. 17 (1975), 211-227. MR 0437056
Reference: [67] R. Nehse: Some general separation theorems.Math. Nachr. 84 (1978), 319-327. Zbl 0323.46004, MR 0518130
Reference: [68] R. Nehse: A new concept of separation.Comment. Math. Univ. Carolin. 22 (1981), 169-179. Zbl 0518.46005, MR 0609945
Reference: [69] E. A. Nurminskii: Numerical Methods for the Solution of Deterministic and Stochastic Minimax Problems.(in Russian). Naukova dumka, Kiev 1979. MR 0537769
Reference: [70] E. Polak: Computational Methods in Optimization.Academic Press, New York 1971. MR 0282511
Reference: [71] D. A. Pierre, M. J. Lowe: Mathematical Programming Via Augmented Lagrangians.Addison-Wesley Publ. Comp., Reading 1975. Zbl 0347.90048
Reference: [72] R. T Rockafellar: Augmented Lagrange multiplier functions and duality in nonconvex programming.SIAM J. Control 12 (1974), 268-285. Zbl 0257.90046, MR 0384163
Reference: [73] R. T. Rockafellar: Solving a nonlinear programming problem by way of a dual problem.Symposia Mathematica 19 (1976), 135-160. Zbl 0394.90078, MR 0446522
Reference: [74] S. Rolewicz: On conditions warantying $\phi$-subdifferentiability.Math. Programming Study 14, (1981), 215-224. MR 0600131
Reference: [75] Z. Schindler: Multiplier Methods in Discrete-Time Optimal Control.(in Czech). Ph.D. Thesis, Prague 1980.
Reference: [76] I. Singer: A Fenchel-Rockafellar type duality theorem for maximization.Bull. Austral. Math. Soc. 20 (1979), 193-198. Zbl 0404.90101, MR 0557226
Reference: [77] I. Singer: Some new applications of the Fenchel-Rockafellar duality theorem: Lagrange multipliers theorems and hyperplane theorems for convex optimization and best approximation.Nonlinear Analysis 3 (1979) 2, 239-248. MR 0525974
Reference: [78] R. Temam: Nouvelles applications de la dualité en calcul des variations.Analyse Convexe et Ses Applications, Comptes Rendus, Janvier 1974. Springer-Verlag, Berlin 1974. MR 0482469
Reference: [79] A. P. Wierzbicki, A. Hatko: Computational methods in Hilbert space for optimal control problems with delays.In: Proc. of 5th IFIP Conf. on Optimization Techniques, Rome (R. Conti, A. Ruberti, eds.). L. N. in Comp. Sci., Vol. 3, Springer-Verlag, Berlin 1973. Zbl 0289.49030, MR 0448218
Reference: [80] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory.In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.). Academic Press, New York 1971. Zbl 0281.47043
Reference: [81] J. L. Lions, E. Magenes: Problèmes aux limites non-homogénes et applications.Dunod, Paris 1968. Zbl 0165.10801
Reference: [82] A.D. Ioffeand V. M. Tichomirov: Extensions of variational problems.Trans. Moscow Math. Soc. 18 (1968), 207-273.
Reference: [83] J. P. Aubin: Gradients généralisés de Clarke.Ann. Sci. Math. Québec II (1978), 2, 197-252. Zbl 0411.49001, MR 0516562
Reference: [84] A. Auslender: Differentiable stability in non-convex and non-differentiable programming.Math. Programming Study 10 (1979), 29-41. Zbl 0403.90068, MR 0527055
Reference: [85] J. M. Borwein: Semi-infinite programming duality: how special is it?.In: Semi-infinite Programming and Applications. (Proc. of a conference, A. V. Fiacco, K. O. Kortanek, Eds.). L. N. in Econom. and Math. Systems, Vol. 215, Springer-Verlag, Berlin 1983. Zbl 0514.49019, MR 0709266
Reference: [86] F. H. Clarke: Generalized gradients and applications.Trans. Amer. Math. Soc. 205 (1975), 247-262. Zbl 0307.26012, MR 0367131
Reference: [87] F. H. Clarke: Generalized Gradients of Lipschitz Functionals.MRC Technical Summary Report # 1687, University of Wisconsin-Madison 1976.
Reference: [88] F. H. Clarke: A new approach to Lagrange multipliers.Math. Oper. Res. 1 (1976), 165-174. Zbl 0404.90100, MR 0414104
Reference: [89] F. H. Clarke: Optimization and Nonsmooth Analysis.J. Wiley and Sons, New York 1983. Zbl 0582.49001, MR 0709590
Reference: [90] V. F. Demyanov: Nondifferentiable Optimization.(in Russian). Nauka, Moscow 1981. MR 0673171
Reference: [91] J. Gauvin: The generalized gradient of a marginal function in mathematical programming.Math. Oper. Res. 4 (1979), 458-463. Zbl 0433.90075, MR 0549132
Reference: [92] J.-B. Hiriart Urruty: New concepts in nondifferentiable programming.Bull. Soc. Math. France, Mem. 60 (1979), 57-85. Zbl 0469.90071, MR 0562256
Reference: [93] A. D. Ioffe V. M. Tichomirov: Theory of Extremal Problems.(in Russian). Nauka, Moscow 1974. MR 0410502
Reference: [94] A. D. Ioffe: Necessary and sufficient conditions for a local minimum.(3 parts). SIAM J. Control. Optimiz. 17 (1979), 245-265. Zbl 0417.49029, MR 0525025
Reference: [95] O. A. Ladyzhenskaya V. A. Solonnikov, N. N. Uralceva: Linear and Quasilinear Equations of the Parabolic Type.(in Russian). Nauka, Moscow 1967.
Reference: [96] CI. Lemaréchal J. J. Strodiot, A. Bihain: On a Bundle Algorithm for Nonsmooth Optimization.NPS 4, Madison 1980.
Reference: [97] O. L. Mangasarian, S. Fromowitz: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints.J. Math. Anal. Appl. 17(1967), 37-47. MR 0207448
Reference: [98] R. Mifflin: Semismooth and semiconvex functions in optimization.SIAM J. Control Optimiz. 15 (1977), 959-972. MR 0461556
Reference: [99] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner Texte zur Math., Band 52, Teubner Verlag, Leipzig 1983. MR 0731261
Reference: [100] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies.An Introduction. Elsevier, Amsterdam -Oxford-New York 1981. MR 0600655
Reference: [101] J. V. Outrata: On a class of nonsmooth optimal control problems.Appl. Math. Optim. 10 (1983), 287-306. Zbl 0524.49021, MR 0713480
Reference: [102] J. V. Outrata, Z. Schindler: On some nondifferentiable problems in optimal control.Prep. of the IIASA Workshop "Nondifferentiable optimization: Motivations and Applications" held at Sopron, September 1984. MR 0822009
Reference: [103] J. V. Outrata, J. Jarušek: Exact penalties with Sobolev norms in optimal control.Proc. of the Workshop "Mathematical Programming - Theory and Applications" held at Wartburg, November 1984.
Reference: [104] T. Pietrzykowski: The potential method for conditional maxima in the locally compact metric spaces.Numer. Math. 14 (1970), 4, 325-329. Zbl 0195.46304, MR 0256730
Reference: [105] J. C. Pomerol: The Lagrange multiplier set and the generalized gradient set of the marginal function of a differentiable program in a Banach space.J. Optim. Theory Appl. 38 (1982), 307-317. Zbl 0472.90077, MR 0686209
Reference: [106] R. T. Rockafellar: The Theory of Subgradients and Its Applications to Problems of Optimization: Convex and Nonconvex Functions.Helderman Verlag, Berlin 1981. Zbl 0462.90052, MR 0623763
Reference: [107] T. I. Sivelina: The minimization of one kind of quasidifferentiable functions.(in Russian). Vestnik LGU (1983), 7, 103-105. MR 0702639
Reference: [108] Z. Schindler: Optimal control of the eutrophisation in water reservoirs.(in Czech). Vodohosp. Časopis 30 (1982), 5, 536-548.
Reference: [109] R. H. Smith: Multiplier Functionals for Programming in Normed Spaces.Ph.D. Thesis, Johns Hopkins Univ., Baltimore 1971.
Reference: [110] R. H. Smith, V. D. VandeLinde: A saddle-point optimality criterion for nonconvex programming in normed spaces.SIAM J. Appl. Math. 23 (1972), 2, 203-213. MR 0317778
Reference: [111] L. Thibault: Sur les fonctions compactement lipschitziennes et leurs applications: programmation mathématique, controle optimal, espérance conditionnele.Thèses, Montpellier 1980.
Reference: [112] J.-B. Hiriart Urruty: Gradients généralisés de fonctions marginales.SIAM J. Control Optimiz. 16 (1978), 301-316. Zbl 0385.90099, MR 0493610
Reference: [113] S. Agmon A. Douglis, L Nirenberg: Estimates near boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Part II.Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050
Reference: [114] J. A. Nelder, R. Mead: A simplex method for function minimization.Computer J. 7 (1965), 4, 308-313. Zbl 0229.65053
Reference: [115] V. F. Demyanov S. Gamidov, T. I. Sivelina: An algorithm for minimizing a certain class of quasidifferentiable functions.NASA Working Paper WP-83-122.
Reference: [116] R. E. Burkard: Methoden der ganzzähligen Optimierung.Springer-Verlag, Berlin-Heidelberg-New York 1972. MR 0342175
Reference: [117] W. I. Zangwill: Non-linear programming via penalty functions.Management Sci. 13 (1967), 344-358. Zbl 0171.18202, MR 0252040
.

Files

Files Size Format View
Kybernetika_20-1984-8_1.pdf 4.783Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo