Previous |  Up |  Next

Article

Title: Separation theorems for sets in product spaces and equivalent assertions (English)
Author: Thierfelder, Jörg
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 6
Year: 1991
Pages: 522-534
.
Category: math
.
MSC: 46A22
MSC: 46A40
MSC: 46A99
MSC: 46N10
MSC: 49J27
MSC: 90C29
idZBL: Zbl 0778.46005
idMR: MR1150940
.
Date available: 2009-09-24T18:28:43Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124294
.
Reference: [1] W. Bonnice, R. Silverman: The Hahn-Banach extension and the least upper bound properties are equivalent.Proc. Amer. Math. Soc. 18 (1967), 843 - 850. Zbl 0165.46802, MR 0215050
Reference: [2] J. M. Borwein: Continuity and differentiability properties of convex operators.Proc. London Math. Soc. 44 (1982), 3, 420-444. Zbl 0487.46026, MR 0656244
Reference: [3] J. M. Borwein: On the Hahn-Banach extension property.Proc. Amer. Math. Soc. 86 (1982), 1,42-46. Zbl 0499.46002, MR 0663863
Reference: [4] K.-H. Elster, J. Thierfelder: A general concept on cone approximations in nondifferentiable optimization.In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189. MR 0822014
Reference: [5] R. B. Holmes: Geometric Functional Analysis and its Applications.Springer-Verlag, Berlin-Heidelberg-New York 1975. Zbl 0336.46001, MR 0410335
Reference: [7] G. Jameson: Ordered Linear Spaces.(Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970. Zbl 0196.13401, MR 0438077
Reference: [8] G. Köthe: Topologische Lineare Raume I.Springer-Verlag, Berlin-Heidelberg-New York 1966. MR 0194863
Reference: [9] R. Nehse: The Hahn-Banach property and equivalent conditions.Comment. Math. Univ. Carolinae 19 (1978), 1, 165-177. Zbl 0373.46011, MR 0492379
Reference: [10] R. Nehse: Separation of two sets in product spaces.Math. Nachrichten 97 (1980), 179-187. MR 0600832
Reference: [11] R. Nehse: Zwei Fortsetzungssätze.Wiss. Zeitschrift TH Ilmenau 30 (1984), 49-57. Zbl 0566.46002, MR 0749750
Reference: [12] A. L. Peressini: Ordered Topological Vector Spaces.Harper and Row, New York-Evanston-London 1967. Zbl 0169.14801, MR 0227731
Reference: [13] J. Thierfelder: Nonvertical affine manifolds and separation theorems in product spaces (to appear). MR 1121215
Reference: [14] T. O. To: The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces.Proc. Amer. Math. Soc. 30 (1971), 287-295. MR 0417746
Reference: [15] M. Valadier: Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné.Math. Scand. 30 (1972), 65-74. MR 0346525
Reference: [16] J. Zowe: Subdifferential of convex functions with values in ordered vector spaces.Math. Scand. 34(1974), 69-83. MR 0380400
.

Files

Files Size Format View
Kybernetika_27-1991-6_4.pdf 556.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo