Previous |  Up |  Next

Article

Title: Channels with additive asymptotically mean stationary noise (English)
Author: Šujan, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 17
Issue: 1
Year: 1981
Pages: 1-15
.
Category: math
.
MSC: 94A24
MSC: 94A40
idZBL: Zbl 0455.94008
idMR: MR629345
.
Date available: 2009-09-24T17:18:23Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124379
.
Reference: [1] R. J. Fontana R. M. Gray J. C. Kieffer: Asymptotically mean stationary channels.(1979 - preprint). MR 0619116
Reference: [2] R. M. Gray J. C. Kieffer: Asymptotically mean stationary measures.(1979 -submitted to Ann. of Prob.). MR 0586779
Reference: [3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels.IEEE Trans. Inform. Theory 1T-25 (1979), 292-306. MR 0528007
Reference: [4] K. Jacobs: Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle.Math. Annalen 757 (1959), 125-135. Zbl 0089.33903, MR 0128003
Reference: [5] J. C. Kieffer: A general formula for the capacity of stationary nonanticipatory channels.Inform. and Control 26 (1971), 381-391. MR 0384324
Reference: [6] J. Nedoma: The capacity of a discrete channel.Trans. 1st Prague Conf. Inform. Theory etc., NČSAV, Prague 1957, 143-181. Zbl 0088.10701, MR 0102451
Reference: [7] K. R. Parthasarathy: On the integral representation of the rate of transmission of a stationary channel.111. J. Math. 2 (1961), 299-305. Zbl 0100.33903, MR 0121259
Reference: [8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise.Sankhya A 25 (1963), 75-84. Zbl 0119.34003, MR 0173568
Reference: [9] C. E. Shannon: A mathematical theory of communication.Bell. Syst. Techn. J. 27 (1948), 379-423, 623-656. Zbl 1154.94303, MR 0026286
Reference: [10] Š. Šujan: On the integral representation of the entropy rate.Studia Sci. Math. Hung. 11 (1976), 25-36. MR 0545093
Reference: [11] Š. Šujan: A generalized coding problem for discrete information sources.Supplement. Kybernetika 13 (1977), 95 pp. MR 0465531
Reference: [12] Š. Šujan: Epsilon-rates, epsilon-quantiles, and group coding theorems for finitely additive information sources.Kybernetika 16 (1980), 105-119. MR 0575419
Reference: [13] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets.3rd Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, Liblice 1980, 201-206.
Reference: [14] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources.Kybernetika 6 (1970), 127-148. Zbl 0245.94013, MR 0275979
Reference: [15] K. Winkelbauer: On the coding theorem for decomposable channels I, II.Kybernetika 7 (1971), 109-123, 230-255. MR 0300751
Reference: [16] K. Winkelbauer: On the regularity condition for decomposable communication channels.Kybernetika 7 (1971), 314-327. Zbl 0244.94007, MR 0349272
Reference: [17] K. Winkelbauer: On discrete channels decomposable into memoryless components.Kybernetika 5 (1972), 114-132. Zbl 0256.94021, MR 0339887
Reference: [18] K. Winkelbauer: On the capacity of decomposable channels.Trans. 6th Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903-914. Zbl 0298.94026, MR 0371509
Reference: [19] K. Winkelbauer: Information channels with memoryless components.Trans. 7th Prague Conf. Inform. Theory etc., Academia, Prague 1978, 559-576. Zbl 0421.94007, MR 0519508
Reference: [20] K. Winkelbauer: Non-smooth channels with additive random noise.Trans. 8th Prague Conf. Inform. Theory etc., Academia, Prague 1978, Vol. B, 365-381. Zbl 0416.94008, MR 0536830
Reference: [21] K. Winkelbauer: Discrete communication channels decomposable into finite-memory components.In: Contributions to Statistics (Jaroslav Hájek Memorial Volume, J. Jurečková, ed.), Academia, Prague 1979, 277-306. Zbl 0421.94008, MR 0561275
Reference: [22] J. Wolfowitz: Coding Theorems of Information Theory.2nd edition. Springer-Verlag, Berlin-Gottingen-New York 1964. Zbl 0132.39704, MR 0176851
.

Files

Files Size Format View
Kybernetika_17-1981-1_1.pdf 755.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo