Previous |  Up |  Next

Article

Title: Sensitivity error bounds for non-exponential stochastic networks (English)
Author: van Dijk, Nico M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 2
Year: 1995
Pages: 175-188
.
Category: math
.
MSC: 60K10
MSC: 90B15
MSC: 90B22
idZBL: Zbl 0860.90059
idMR: MR1334508
.
Date available: 2009-09-24T18:54:21Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124425
.
Reference: [1] I. J. B. F. Adan, J. van der Wal: Monotonicity of the throughput of a closed queueing network in the number of jobs.Oper. Res. 57 (1989), 953-957. Zbl 0696.60087, MR 1069884
Reference: [2] I. J. B. F. Adan, J. van der Wal: Monotonicity of the throughput in single server production and assembly networks with respect to the buffer sizes.In: Proceedings of the 1st International Workshop on Queueing Systems with Blocking. North-Holland 1989, pp. 345-356.
Reference: [3] A. D. Barbour: Networks of queues and the method of stages.Adv. in Appl. Probab. 8 (1976), 584-591. Zbl 0342.60065, MR 0440729
Reference: [4] J. W. Cohen: Sensitivity and insensitivity.Delft Progr. Rep. 5 (1980), 159-173. Zbl 0452.60092, MR 0606025
Reference: [5] X. R. Cao: Convergence of parameter sensitivity estimates in a stochastic experiment.IEEE Trans. Automat. Control 30 (1985), 834-843. Zbl 0574.62081, MR 0799478
Reference: [6] X. R. Cao: First-order perturbation analysis of a single multi-class finite source queue.Performance Evaluation 7 (1987), 31-41. MR 0882859
Reference: [7] X. R. Cao, Y. C. Ho: Sensitivity estimate and optimization of throughput in a production line with blocking.IEEE Trans. Automat. Control 32 (1987), 959-967. MR 0909965
Reference: [8] Y. C. Ho, C. Cassandras: Infinitesimal and finite perturbation analysis for queueing networks.Automatica 19 (1983), 4, 439-445. Zbl 0514.90028
Reference: [9] Y. C. Ho, S. Li: Extensions of infinitesimal perturbation analysis.IEEE Trans. Automat. Control 33 (1988), 427-438. Zbl 0637.90091, MR 0936266
Reference: [10] P. Glasserman, Y. C. Ho: Aggregation approximations for sensitivity analysis of multi-class queueing networks.Performance Evaluation.
Reference: [11] A. Hordijk, N.M. van Dijk: Adjoint process, job-local balance and intensitivity of stochastic networks.Bull. 44th Session Int. Inst. 50 (1983), 776-788. MR 0820735
Reference: [12] C. D. Meyer, Jr.: The condition of a finite Markov chain and perturbation bounds for the limiting probabilities.SIAM J. Algebraic Discrete Methods 1 (1980), 273-283. Zbl 0498.60071, MR 0586154
Reference: [13] J. R. Rohlicek, A. S. Willsky: The reduction of perturbed Markov generators: an algorithm exposing the role of transient states.J. Assoc. Comput. Mach. 35 (1988), 675-696. Zbl 0643.60057, MR 0963167
Reference: [14] R. Schassberger: The intensitity of stationary probabilities in networks of queues.Adv. in Appl. Probab. 10 (1987), 906-912. MR 0509223
Reference: [15] P. J. Schweitzer: Perturbation theory and finite Markov chains.J. Appl. Probab. 5 (1968), 401-413. MR 0234527
Reference: [16] E. Seneta: Finite approximations to finite non-negative matrices.Cambridge Stud. Philos. 63 (1967), 983-992. MR 0217874
Reference: [17] E. Seneta: The principles of truncations in applied probability.Comment. Math. Univ. Carolin. 9 (1968), 533-539. MR 0235640
Reference: [18] E. Seneta: Non-Negative Matrices and Markov Chains.Springer Verlag, New York 1980. MR 2209438
Reference: [19] J. G. Shantikumar, D. D. Yao: Stochastic monotonicity of the queue lengths in closed queueing networks.Oper. Res. 35 (1987), 583-588. MR 0924950
Reference: [20] J. G. Shantikumar, D. D. Yao: Throughput bounds for closed queueing networks with queue-dependent service rates.Performance Evaluation 9 (1987), 69-78. MR 0974496
Reference: [21] J. G. Shantikumar, D. D. Yao: Monotonicity properties in cycbc queueing networks with finite buffers.In: Proceedings of the First Int. Workshop on Queueing Networks with Blocking. North Carolina 1988.
Reference: [22] D. Stoyan: Comparison Methods for Queues and Other Stochastic Models.J. Wiley, New. York 1983. Zbl 0536.60085, MR 0754339
Reference: [23] R. Suri: A concept of monotonicity and its characterization for closed queueing networks.Oper. Res. 55 (1985), 606-024. Zbl 0567.90040, MR 0791711
Reference: [24] R. Suri: Infinitesimal perturbation analysis for general discrete event systems.J. Assoc. Comput. Mach. 31, (1987), 3, 686-717. MR 0904200
Reference: [25] R. Suri: Perturbation analysis. The state of the art and research issues explained via the GI/GI/1 queue.In: Proceedings of the IEEE.
Reference: [26] H. C. Tijms: Stochastic Modelling and Analysis. A Computational Approach.J. Wiley, New York 1986. MR 0847718
Reference: [27] P. Tsoucas, J. Walrand: Monotonicity of throughput in non-markovian networks.J. Appl. Probab. (1983).
Reference: [28] N. M. van Dijk: A formal proof for the insensivity of simple bounds for finite multi-server non-exponential tandem queues based on monotonicity results.Stochastic Process. Appl. 27 (1988), 216-277.
Reference: [29] N. M. van Dijk: Perturbation theory for unbounded Markov reward process with applications to queueing.Adv. in Appl. Probab. 20 (1988), 99-111. MR 0932536
Reference: [30] N. M. van Dijk: Simple performance bounds for non-product form queueing networks.In: Proceedings of the First International Workshop on Queueing Networks with Blocking. North-Holland 1988, pp. 1-18.
Reference: [31] N. M. van Dijk: Simple bounds for queueing systems with breakdowns.Performance Evaluation 7 (1988), 117-128. Zbl 0698.90034, MR 0938482
Reference: [32] N. M. van Dijk: A simple throughput bound for large closed queueing networks with finite capacities.Performance Evaluation 10 (1988), 153-167. MR 1032181
Reference: [33] N. M. van Dijk: A note on extended uniformization for non-exponential stochastic networks.J. Appl. Probab. 28 (1991), 955-961. Zbl 0746.60088, MR 1133809
Reference: [34] N. M. van Dijk, B. F. Lamond: Bounds for the call congestion of finite single-server exponential tandem queues.Oper. Res. 36 (1988), 470-477. MR 0955756
Reference: [35] N. M. van Dijk, M. L. Puterman: Perturbation theory for MarJcov reward processes with applications to queueing systems.Adv. in Appl. Probab. 20 (1988), 79-99. MR 0932535
Reference: [36] N. M. van Dijk, J. van der Wal: Simple bounds and monotonicity results for multi-server exponential tandem queues.Queueing Systems Theory Appl. 4 (1989), 1-16. MR 0980419
Reference: [37] E. W. B. van Marion: Influence of holding time distributions or blocking probabilities of a grading.TELE 20 (1968), 17-20.
Reference: [38] W. Whitt: Comparing counting processes and queues.Adv. in Appl. Probab. 13 (1981), 207-220. Zbl 0449.60064, MR 0595895
Reference: [39] W. Whitt: Stochastic comparison for non-Markov processes.Math. Oper. Res. 11 (1986), 4, 608-618. MR 0865555
Reference: [40] P. Whittle: Partial balance and insensitivity.Adv. in Appl. Probab. 22 (1985), 168-175. Zbl 0561.60095, MR 0776896
.

Files

Files Size Format View
Kybernetika_31-1995-2_4.pdf 781.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo