Title:
|
Topological equivalence and topological linearization of controlled dynamical systems (English) |
Author:
|
Čelikovský, Sergej |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
31 |
Issue:
|
2 |
Year:
|
1995 |
Pages:
|
141-150 |
. |
Category:
|
math |
. |
MSC:
|
34C20 |
MSC:
|
34H05 |
MSC:
|
93B17 |
MSC:
|
93B18 |
MSC:
|
93D15 |
idZBL:
|
Zbl 0863.93013 |
idMR:
|
MR1334506 |
. |
Date available:
|
2009-09-24T18:54:07Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124427 |
. |
Reference:
|
[1] D. Aeyels: Local and global controllability for nonlinear systems.Systems Control Lett. 5 (1984), 19-26. Zbl 0552.93009, MR 0768710 |
Reference:
|
[2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control.Systems Control Lett. 5 (1985), 289-294. Zbl 0569.93056, MR 0791542 |
Reference:
|
[3] R. W. Brockett: Feedback invariants for nonlinear systems.In: Proc. of the Vllth IFAC World Congress, Helsinki 1978, pp. 1115-1120. |
Reference:
|
[4] S. Čelikovský: On the representation of trajectories of bilinear systems and its applications.Kybernetika 23 (1987), 3, 198-213. MR 0900330 |
Reference:
|
[5] S. Čelikovský: On the continuous dependence of trajectories of bilinear systems and its applications.Kybernetika 24 (1988), 4, 278-292. MR 0961561 |
Reference:
|
[6] S. Čelikovský: On the Lipschitzean dependence of trajectories of multi-input time dependent bilinear systems on controls.Problems Control Inform. Theory 17(1988), 4, 231-238. MR 0958030 |
Reference:
|
[7] S. Čelikovský: Topological Hnearization of nonlinear systems: Application to the non-smooth stabilization.In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41 44. |
Reference:
|
[8] S. Čelikovský: Global linearization of nonlinear systems: A survey.In: Geometry in Nonhnear and Differential Inclusions (Banach Center Publications, Vol. 32), Polish Academy of Sciences, Warszawa 1995. MR 1364424 |
Reference:
|
[9] S. Čelikovský: Numerical algorithm for the nonsmooth stabilization based on topological Hnearization.In: Optimization-Based Computer-Aided Modelling and Design (J. Doležal and J. Fidler, eds.), ÚTIA AV ČR, Prague 1995. |
Reference:
|
[10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask.In: Proc. of the Conf. Algebraic and Geometric Methods in Nonlinear Control Theory, Paris 1985 (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986. MR 0862326 |
Reference:
|
[11] W. Dayawansa W. M. Boothby, D. L. Elliot: Global state and feedback equivalence of nonlinear systems.Systems Control Lett. 6 (1985), 229-234. MR 0812254 |
Reference:
|
[12] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue.In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), (Lecture Notes in Control Inform. Science 144), Springer-Veilag, New York 1990, pp. 778-787. Zbl 0716.93046 |
Reference:
|
[13] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields.Springer-Verlag, New York 1986. MR 1139515 |
Reference:
|
[14] R. E. Kalman P. L. Falb, M. A. Arbib: Topics in Mathematical Systems Theory.McGraw-Hill, New York 1969. MR 0255260 |
Reference:
|
[15] M. Kawski: Stabilization of nonlinear systems in the plane.Systems Control Lett. 12 (1989), 169-175. Zbl 0666.93103, MR 0985567 |
Reference:
|
[16] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems.IEEE Control Systems Magazine, April 1993, 47-57. |
Reference:
|
[17] W. Respondek: Geometiic methods in linearization of control systems.In: Mathematical Control Theoty, Banach Centei Publications 14 (1985), 453-467. MR 0851243 |
Reference:
|
[18] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Automat. Control 56 (1991), 259-294. Zbl 0737.93004, MR 1092818 |
Reference:
|
[19] L. A. Zadeh, C. A. Desoer: Linear Systems Theory.McGraw-Hill, New Yoik 1963. |
. |