Previous |  Up |  Next

Article

Title: On threshold autoregressive processes (English)
Author: Anděl, Jiří
Author: Netuka, Ivan
Author: Zvára, Karel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 20
Issue: 2
Year: 1984
Pages: 89-106
.
Category: math
.
MSC: 60G10
MSC: 60G15
MSC: 60J99
MSC: 62M10
idZBL: Zbl 0547.62058
idMR: MR747062
.
Date available: 2009-09-24T17:39:32Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124493
.
Reference: [1] H. Akaike: A new look at the statistical model identfication.IEEE Trans. Automat. Control AC-19 (1974), 716-723. MR 0423716
Reference: [2] J. Anděl: Fitting models in time series analysis.Math. Operationsforsch. Statist., Ser. Statistics 13 (1982), 121-143. MR 0665069
Reference: [3] J. Anděl: Marginal distributions of autoregressive processes.In: Trans. 9th Prague Conf. Inform. Theory etc., Vol. A, Academia, Prague 1983, pp. 127- 135. MR 0757732
Reference: [4] J. Anděl: Dependent random variables with a given marginal distribution.Acta Univ. Carolinae. Math.-and Phys. 24 (1983), 3-12. MR 0733140
Reference: [5] J. Anděl, T. Cipra: Prahové modely.(výzkumná zpráva) [Threshold Models (Technical Report)]. Institut hygieny a epidemiologie, Praha 1982.
Reference: [6] C. W. J. Granger, A. P. Anderson: An Introduction to Bilinear Time Series Models.Vandenhoeck and Ruprecht, Gottingen 1978. MR 0483231
Reference: [7] D. L. Doob: Stochastic Processes.Wiley, New York 1953. Zbl 0053.26802, MR 0058896
Reference: [8] V. Haggan, T. Ozaki: Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model.Biometrika 68 (1981), 189-196. Zbl 0462.62070, MR 0614955
Reference: [9] D. A. Jones: Non-linear Autoregressive Processes.Unpublished Ph. D. Thesis, Univ. of London 1976.
Reference: [10] D. A. Jones: Stationarity of Non-linear Autoregressive Processes.Technical Report, Institute of Hydrology, Wallingford, Oxon, U.K. 1977.
Reference: [11] D. A. Jones: The Statistical Treatment of Non-linear Autoregressive Processes.Technical Report, Institute of Hydrology, Wallingford, Oxon, U. K. 1977.
Reference: [12] D. A. Jones: Nonlinear autoregressive processes.Proc. Roy. Soc. London Ser. A 360 (1978), 71-95. Zbl 0378.62076, MR 0501672
Reference: [13] T. Ozaki: Non-linear threshold autoregressive models for non-linear random vibrations.J. Appl. Prob. 18 (1981), 443-451. Zbl 0459.73077
Reference: [14] T. Ozaki, H. Oda: Non-linear time series model identification by Akaike's information criterion.In: Information and Systems (B. Dubuisson, ed.), Pergamon Press, Oxford 1978.
Reference: [15] J. Pemberton, H. Tong: A Note on the Distributions of Non-linear Autoregressive Stochastic Processes.Technical Report 132, Dept. of Statist., Univ. of Manchester 1980.
Reference: [16] J. Pemberton, H. Tong: Frequency-domain Analysis of Non-linear Systems Through Threshold Autoregression.Technical Report 140, Dept. of Statist., Univ. of Manchester 1981.
Reference: [17] H. Tong: On a threshold model.In: Pattern Recognition and Signal Processing (C. H. Chen, ed.), Sijthoffand Noordhoff, Amsterdam 1978, pp. 575-586.
Reference: [18] H. Tong: A view on non-linear time series model building.In: Time Series (Proc. Int. Conf. Nottingham Univ. 1979,0. D. Anderson, ed.), North Holland, Amsterdam 1980, pp. 41- 56. MR 0593326
Reference: [19] H. Tong: On the Structure of Threshold Time Series Models.Technical Report 134, Dept. of Statist., Univ. of Manchester 1980.
.

Files

Files Size Format View
Kybernetika_20-1984-2_1.pdf 1.151Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo