Previous |  Up |  Next

Article

Title: Statistical methods for comparing theorem proving algorithms (English)
Author: Kramosil, Ivan
Author: Zwinogrodzki, Zbigniew
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 10
Issue: 3
Year: 1974
Pages: (221)-240
.
Category: math
.
MSC: 68A40
MSC: 68T15
idZBL: Zbl 0284.68068
idMR: MR0345460
.
Date available: 2009-09-24T16:39:32Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124528
.
Reference: [1] A. Špaček: Statistical Estimation of Probability in Boolean Logics.In: Transactions of the Second Prague Conference on Information Theory. Prague 1960, 609-626. MR 0123477
Reference: [2] A. Špaček: Statistical Estimation of Semantic Probability.In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics, 1960, vol. 1, 655-688.
Reference: [3] I. Kramosil: Statistical Estimation of Deducibility in Polyadic Algebras.Kybernetika 7 (1971), 3, 181-200. Zbl 0216.29502, MR 0300881
Reference: [4] I. Kramosil: A Method for Random Sampling of Well-Formed Formulas.Kybernetika 8 (1972), 2, 133-148. Zbl 0242.02014, MR 0343414
Reference: [5] A. Chirch: A note on the Entscheidungsproblem.The Journal of Symbolic Logic 1, (1936), 40-41.
Reference: [6] J. A. Robinson: Theorem-proving on the Computer.Journal of the Assoc. for Comput. Mach. 10 (1963), 163-174. Zbl 0109.35603, MR 0149693
Reference: [7] H. Wang: Toward Mechanical Mathematics.IBM J. Res. Develop. 4 (1960), 2-22. Zbl 0106.00802, MR 0113291
Reference: [8] Gentzen G.: Untersuchungen über das logische Schliessen.Math. Zeit. 39 (1934-35), 176-210. Zbl 0010.14601
Reference: [9] W. Craig: Linear Reasoning - a New Form of Herbrand - Gentzen Theorem.The Journal of Symboic Logic 22 (1957), 250-268. MR 0104564
Reference: [10] Beth E. W.: Formal Methods.D. Reidel Publishing Company, Dordrecht, 1962. Zbl 0105.24503, MR 0160709
Reference: [11] S. W. Szczerba: Semantic Method of Proving Theorems.Bull. de ľAcademie Polonaise des Sciences. Serie des sciences math., astr. et phys. 18 (1970), 9, 507-512. Zbl 0212.03003, MR 0274257
Reference: [12] J. A. Robinson: A Machine Oriented Logic Based on the Resolution Principle.J. Assoc. Comput. Mach. 12 (1965), 23-41. Zbl 0139.12303, MR 0170494
Reference: [1З] J. A. Robinson: The Generalized Resolution Principle.Machine Intelligence 3, Edinburgh University Press, 1968, 77-93. Zbl 0195.31102
Reference: [14] S. Ju. Masłov: The Inverse Method for Establishing Deducibility for Logical Calculi.Trudy Matem. Inst. Steklov. Translation: Proc. Steklov Inst. Math. 98, (1968), 26-87. MR 0252195
Reference: [15] Maslov S. Ju.: An Inverse Method of Establishing Deducibility of Non-prenex Formulas of the Predicate Calculus.Translation: Soviet Math. Dokl. 8 (1967), 1, 16-19. MR 0209115
Reference: [16] R. Kowalski: An Exposition of Paramodulation with Refinements.Department of Computational Logic, University of Edinburgh, 1968.
Reference: [17] J. A. Robinson S. Wos: Paramodulation and Theorem-Proving in First-Order Theories with Equality.Machine Intelligence 4 (1969), Edinburgh Uпiversity Press, 135-150. MR 0275720
Reference: [18] S. C. van Westrhenen: Statistical Studies of Theoremhood in Classical Propositional and First-Order Predicate Calculus.J. Assoc. Comp. Mach. 19 (1972), 2, 347-365. Zbl 0246.68017, MR 0297524
Reference: [19] S. Ju. Masłov E. D. Rusakov: Probabilistic Canonical Systems.Translation: Seminars in Mathematics V. A. Steklov Math. Inst., Leningrad, 32 (1972), 66-76. MR 0344089
Reference: [20] B. A. Trachtenbrot: Složnosť algoritmov i vyčislenij.Novosibirsk 1967.
Reference: [21] G. S. Tseitin: On the complexity of Derivation in Propositional Calculus.Seminars in Mathematics V. A. Steklov Math. Inst., Leningrad, 8 (1970), 115-125.
Reference: [22] S. Ju. Masłov: Relationship Between Tactics of the Inverse Method and the Resolution Method.Ibid, 16 (1971), 69-73.
Reference: [23] D. G. Kuehner D. G.: A Note on the Relation Between Resolution and Masłov's Inverse Method.Machine Intelligence 6, Edinburgh University Press, 1971, 73-76. Zbl 0263.68049
Reference: [24] Orłowska E.: Theorem-proving systems.Dissertationes Mathematicae. PWN, Warszawa 1973.
Reference: [25] M. Loève: Probability Theory.Second Edition. D. van Nostrand Comp., Princeton, New Jersey-Toronto-New York-London 1961. MR 0123342
Reference: [26] B. V. Gnedenko: Kurs teoriji verojatnostej.Third Edition, Firmatgiz, Moskva 1961.
Reference: [27] A. Walde: Sequential Analysis.Russian Translation: Fizmatgiz, Moskva 1960. MR 0116440
Reference: [28] E. L. Lehman: Statistical Hypotheses Testing.Russian Translation. Nauka, Moskva 1964.
.

Files

Files Size Format View
Kybernetika_10-1974-3_4.pdf 1.069Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo